UNIVERSITE AIX-MARSEILLE I - Université de Provence U.F.R des Sciences Géographiques et de l'Aménagement Centre Européen de Recherches et d'Enseignement en Géosciences de l'Environnement (UMR 6635-CNRS)

THESE

Pour obtenir le grade de

DOCTEUR DE L'UNIVERSITE AIX-MARSEILLE I

Formation doctorale: Géographie physique et humaine, aménagement, urbanisme

Présentée et soutenue publiquement

Par

Olivier SAMAT

Le 23 mars 2007

EFFICACITE ET IMPACT DES OUVRAGES EN ENROCHEMENT SUR LES PLAGES MICROTIDALES. LE CAS DU LANGUEDOC ET DU DELTA DU RHÔNE

Marc ROBIN Edward ANTHONY Mireille PROVANSAL François SABATIER Raphaël CERTAIN Philippe SERGENT Vincent REY Professeur, LETG, Université de Nantes, Nantes Professeur, Université du Littoral Côte d'Opale, Dunkerque Professeur, CEREGE, Université de Provence, Aix en Provence Maître de Conférence, CEREGE, Université de Provence, Aix en Provence Maître de Conférence, Université de Perpignan, Perpignan Ingénieur, HDR, Centre d'Etude Technique Maritime Et Fluviales, Compiègne Professeur, LSEET, Université de Toulon et du Var, Toulon Rapporteur Rapporteur Directeur Co-directeur Examinateur Examinateur Examinateur

- 2 -

Remerciements

Si le travail de thèse apparaît de prime abord une expérience, un «challenge» personnel guidé par le désir de mener au bout un projet de recherche qui tient particulièrement à cœur, il est aussi, et surtout, l'aboutissement d'un travail d'équipe né de rencontres de contacts aussi divers qu'enrichissants. Cette page constitue ainsi un hommage à toutes les personnes impliquées de près ou de loin dans cette aventure.

Je tiens à remercier, avant tout, Mireille Provansal qui a accepté de diriger une nouvelle thèse sur le « scientifiquement inépuisable » delta du Rhône. La confiance qu'elle m'a accordée durant ces trois années, et ses précieux conseils, ont constitué un atout et une motivation qui m'ont permis de mener à bien ce projet.

Je tiens à exprimer mes sincères remerciements à François Sabatier, qui, non content de m'avoir suivi en Maîtrise puis en DEA, a accepté de « co-diriger » cette thèse. Sa patience sa disponibilité, son expérience du domaine littoral et ses conseils avisés m'ont été d'une aide considérable dans la réalisation et la finalisation de ce travail. Merci François.

Je voudrais également remercier toute l'équipe du Parc Naturel Régional de Camargue pour son soutien tant financier que logistique. Travailler à vos côtés a été un réel plaisir. Merci a Didier Olivry d'avoir accepté, en tant que directeur, d'être partenaire de cette thèse. Merci à Régis Vianet et Delphine Marobin-Louche pour leur dynamisme et leur motivation. Merci également à Saïd. Merci à tous pour votre accueil et votre gentillesse (qui m'ont fait oublier les voraces moustiques camarguais).

Ceci m'amène également à remercier le syndicat mixte de la Camargue Gardoise en particulier Stéphane Arnassant et Clarisse Brochier. Merci de votre soutient et votre dynamisme.

Je tiens à remercier Messieurs Edward Anthony de l'Université de la côte d'Opale et Marc Robin de l'Université de Nantes, pour avoir accepté d'être rapporteurs. Merci à Messieurs Raphaël Certain, de l'Université de Perpignan, Philippe Sergent, du CETMEF Compiègne, et Vincent Rey de l'Université de Toulon et du Var, pour avoir accepté d'examiner ce travail.

Merci à Pierre Yves Valantin du SMNLR et Raphaël Certain qui ont mis à disposition de nombreuses et essentielles données concernant le littoral du Languedoc. Merci également à Frédéric Pons du CETE Méditerranée.

Merci à l'équipe des Salins du Midi pour votre soutien, votre « passion du caillou », et pour nous avoir facilité l'accès au littoral. Merci à Patrick Ferdier.

Merci à Jo Vicente et Luc Long du DRASM pour leur soutien logistique dans le « sauvetage » des courantomètres.

Merci à toute l'équipe du CEREGE, à Sylvie De Freitas, Cyrille Blanpain, Jean Jacques Motte, Brigitte Crubezzy, Jules Fleury. Je tiens à remercier ici tout particulièrement Philippe Dussoulier pour sa motivation, son professionnalisme et sa patience, Claude Vella et Albin Ullmann pour leur aide précieuse, et André Héraud pour sa disponibilité et son incroyable travail « Made In the Atelier ».

Je voudrais remercier également Isabelle, Julien.B, Julien.F, Sébastien, Cédric, Carolyne, pour leur participation aux longues et sableuses missions de terrain.

Je tiens à remercier particulièrement, Mickael, et Fabrice. Merci pour les interminables heures passées à réfléchir, re-réfléchir et re-re-réfléchir ensemble sur les données courantométriques. Merci pour votre travail et votre sens physique qui m'ont été d'une aide considérable. Merci à Sam pour sa motivation en manip, sa bonne humeur et son expérience Matlabique. Merci également à Vincent Rey pour ses avis éclairés.

Merci à Pilou, dit Petit Zufo, pour sa disponibilité et ses nombreuses interventions « informatisantes ».

Merci aux « Papassaudiens » pour les soirées mémorables, ces grands moments de poésie et de finesse verbale qui feraient pâlir les plus grands amateurs de littérature française...Grammaticalement c'était souvent les vacances quand même ...c'est moche...

Je voudrais remercier les amis qui ont eu le mérite de me supporter durant ces derniers mois parfois difficiles, merci à tous.

Merci à Francky et Barbu.

Merci à PH pour son altruisme. Je garderai un très bon souvenir de ces quelques mois passés en collocation.

Un grand merci à Guillaume pour sa disponibilité son aide précieuse et les week end sportivo-gastronomiques Chabanonien.

Un grand, un très grand merci à Adrien pour sa présence sa sincérité et ses conseils avisés. Les missions varoises et camarguaises resteront, entre autre, des souvenirs impérissables.

Enfin je voudrais remercier ma famille que j'ai parfois négligée, Jacqueline, André, et Steph. Merci à Lucile...pour tout. Merci à tous les quatre pour votre soutien inconditionnel.

INTRODUCTION _____

11

PARTIE I : CONTEXTE FONCTIONNEL_ACTUEL_DU LITTORAL DU GOLFE DU LION 19

CHAPITRE 1 · LES FOUIPEMENTS COTIERS	23
1 Les ouvrages longitudinaux	$\frac{23}{23}$
1 1 Les ouvrages longitudinaux de haut de nlage	$\frac{23}{23}$
1 2 Les ouvrages longitudinaux de haut de plage et des petits fonds	<u> </u>
2 Les ouvrages transversaux	27
3 Les jetées	28
4. Les ouvrages dans le Golfe du Lion : localisation et date d'implantation.	29
CHAPITRE 2 : HISTOIRE GEOLOGIQUE RECENTE	31
CHAPITRE 3 : LES CONDITIONS DE FORCAGE	35
1. Les apports fluviaux	35
2. Les vents	36
3. La houle	38
4. La marégraphie	41
CHAPITRE 4 : LA MORPHOLOGIE DES PLAGES	45
1. Caractéristiques topographiques	45
1.1 La section émergée	45
1.2 La plage immergée	49
2 Granulométrie des plages	51
CHAPITRE 5 : FONCTIONNEMENT DYNAMIQUE GENERAL DES PLAGES	53
1. Les transits sédimentaires dominants	53
2. Evolution topo bathymétrique récente	54
2.1 Méthodologie	55
2.1.1 Recueil des données	56
2.1.2 Traitement des données	58
2.2 Résultats	61
2.2.1 Les bilans sédimentaires	61
2.2.2 Profondeur de fermeture.	63
3. Evolution de la ligne de rivage depuis 50 ans dans le Golfe du Lion	65
3.1 Méthode	66
3.2 Résultats	68
3.2.1 Les variations en surface de la ligne de rivage	68
3.2.2 Les variations locales de la ligne de rivage.	69
4. Conclusion partielle	73
CONCLUSION DE LA PARTIE 1 :	77

PARTIE II: IMPACT ET EFFICACITE DES_ENROCHEMENTS TRANSVERSAUX

81

CHAPITRE 1:SYNTHESE BIBLIOGRAPHIQUE ET PROBLEMATIQUE	85
CHAPITRE 2: PRESENTATION DES SITES	91
1. Embouchure de l'Aude : Grau de Vendres.	92
2. Frontignan	92
3. Carnon	92
4. Les Baronnets	94
5. Plage de La Fourcade, (Est des Saintes Maries de la Mer)	94
6. Véran, Salins de Giraud	94
7. La Courbe, Salins de Giraud	94

CHAPITRE 3: METHODES 9
1. Les variations du rivage 9
1.1 Collecte des données 9
1.2 Traitement des photographies aériennes 10
1.2.1 L'image de référence 10
1.2.2 Détermination de la méthode d'orthorectification 10
Rectification des images 10
1.2.3 Marges d'erreur retenues 10
2. Définition des périodes au fonctionnement naturel et influencé par les ouvrages 10
3. Etude des variations des surfaces 10
4. Méthode d'étude de l'érosion en aval dérive 11
4.1 Définition des paramètres utilisés dans l'étude 11
4.2 Le traitement des données 11
CHAPITRE 4: RESULTATS 11
1. Variations du rivage avant et après la construction des ouvrages11
1.1 Vendres (Figure II.10) 11
1.2 Frontignan (Figure II.11) 11
1.3 Carnon (figure II.12) 11
1.4 Le secteur des Baronnets (figure III.13) 11
1.5 La Fourcade (figure II.14) 12
1.6 Veran (Figure II.15) 12
1.7 La Courbe (figure 11.16) 12
$\frac{1.8 \text{ Conclusion}}{12}$
2. Variations a moyen termes des surfaces 12
3. Caracterisation de l'erosion en avai derive des amenagements 12
3.1 Evolution temporelle du rivage en avai derive 12
3.1.1 Evolution temporelle du l'ecul transversal (r) du rivage en avai derive des amenagements _ 12
2.1.2 Evolution temporelle de le distance du maximum d'érasion (1r), par report au dernier érie
3.1.3 Evolution temporene de la distance du maximum d'érosion (1), par rapport au dernier épi
3.1.4 Conclusion partielle 13
3.2 Corrélations entre le recul du rivage en aval dérive, le transport sédimentaire et les caractéristiques
des ouvrages 13
3.2.1 Relation entre les paramètres r, s, et lr, relatifs aux caractéristiques de l'érosion en aval dériv
3.2.2 Relation entre l'érosion en aval dérive (r et s) et le transit littoral (Q). 14
CHAPITRE 5: DISCUSSION 14
CHAPITRE 6. CONCLUSION 14
PARTIE III : ETUDE DE L'IMPACT D'UNE DIGUE FRONTALE SUR UNE PLAG

CHAPITRE 1: INTRODUCTION ET ETAT DES LIEUX SUR LA QUESTION _____ 151 1. Synthèse bibliographique 1.1 Les perturbations morphologiques 151 152 1.2 Les perturbations hydrodynamiques 156 2. Présentation du site d'étude 158 CHAPITRE 2 : IMPACT D UNE DIGUE FRONTALE SUR L EROSION DES FONDS _ 161 1. Introduction 2. Presentation du site _____ 162 3. Méthodes 164 4. Résultats 164 _____ 4.1. Question 1: y a t-il accélération de l'érosion au droit de l'ouvrage? 164 4.2 Question 2: y a t augmentation de l'afouillement en pied d'ouvrage? 165 4.3 Question 3: y a t il modification de la morphodynamique des barres? 166 4.4 Question 4: perturbation du profil vers le large? 4.5 Question 5: retardement de la reconstruction de la plage? 168 169

149

SABLEUSE

5. Discussion	
CHARTER 2. COURANTOLOGIE DE LA ZONE DU DEFEDI EMENT LIEI	
HAPITKE 3: COUKANTOLOGIE DE LA ZONE DU DEFEKLEMENT LIEI NCHE FRONTALE	LAUNE
1 Méthode	<u> </u>
1.1 Les caractéristiques du vent et de la marée pendant la campagne de mesure	
1 1 2 Le vent	
1 1 3 La marée	
1.2 Les courantomètres utilisés	
1.2.1 Les ADCP (Accoustic Doppler Current Profiler)	
1.2.2 L'ADV (Accoustic Doppler Velocimeter)	
1.2.3 Le courantomètre houlographe S4 ADW	
1.3 Positionnement des appareils	
1.4 Récapitulatif des enregistrements	
1.5 Pré-requis et validation des mesures des appareils	
1.5.1 Identification des cellules	
1.5.2 Le paramètre γ pour définir la hauteur au déferlement	
1.5.3 Seuil de vitesse de mise en mouvement des sables	
1.5.4 Comparaison des mesures ADCP/ADV	
1.5.5 Standardisation et traitement spécifique des données	
1.6 Evaluation des coefficients de réflexion (en énergie).	
1.7 Synthèse par l'analyse statistique multivariée	
2 Conditions météo marines générales	
2.1 Le vent	
2.2 La houle	
2.3 La marée	
2.4 Synthèse des conditions de vent et de houle	
3. Variations longitudinales de la houle et du courant	
3.1 Variations verticales des vitesses de courant résultants.	
3.2 Variations temporelles des courants résultants.	
3.3 Variations temporelles de la houle.	
3.4 Variations temporelles couplées de la houle et du courant.	
3.5 Variations temporelles des composantes de courant.	
3.5.1 Répartition des composantes sur la colonne d'eau.	
3.5.2 Variation temporelle des composantes de courant.	
3.6 Variations des dynamiques longitudinales par cellules caractéristiques	
3.7 Conclusion partielle.	
4. Variations transversales de la houle et du courantl	
4.1 Variations temporelles des vitesses de courant résultantes	
4.2 Variations temporelles des caractéristiques de houle.	
4.3 Variations temporelles du couplage houle/courant résultant.	
4.4 Variations temporelles des composantes de courant.	
4.5 Variations des coefficients de reflexion sur la periode d'étude	
5. Synthese par l'analyse statistique des donnees meteo marines	
5.1 Synthese des dynamiques generales sur un plan longitudinal	
5.2 Synthese des uprintions générales par cellules	
5.5 Synthese des variations generales cross shore	
5.4 Conclusion des analyses statistiques	
o. Interpretation du fonctionnement dynamique du site de Veran	
6.1 L o rôlo do la progriga etmogración etmogración et la setur	
6.1.2 Le rôle des conditions de heule à le câte	
6.1.2 Le rôle des conditions de noule à la cote	
6.1.4 Comparaison dos vitassos do courant dans la fassa interna	
6.2 Les dynamiques transversales	
7 Discussion /Conclusion du Chenitra III	
ONCLUSION GENERALE DE LA PARTIE III.	,

PARTIE IV : MODIFICATIONS DES FONDS AU DROIT D UN RIVAGE STABILISE : LECAS DU LITTORAL DES SAINTES MARIES DE LA MER.265

CHAPITRE I: CONTEXTE FONCTIONNEL DU LITTORAL DES SAINTES MARIE	S D
1 Evolution hologène et régente du secteur	_ 2
2 Evolution actuelle du secteur	_ 2
3 Les ouvrages de protection	2
4. Conclusion partielle	_ 2
CHAPITRE 2: METHODE D EVALUATION DE LA MOBILITE BATHYMETRIOUI	. 2
1 Détermination des bilans sédimentaires nar la comparaison de Modèles Numériques de Terrain	2
1.1 Collecte des données bathymétriques	- 2
1.2 Précision des données bathymétriques	_ 2
1.3 Choix du maillage	_ 2
1.4 Traitement statistique et interpolation des données	_ 2
1.5 Comparaison et validation des méthodes d'interpolation	_ 2
1.5.1 Validation par comparaison visuelle des cartes bathymétriques	_ 2
1.5.2 Validation par comparaison visuelle de profils	2
1.5.3 Validation statistique.	_ 2
1.5.4 Marges d'erreurs retenues dans l'analyse.	2
2 Les variations locales des pentes	
3. Les données climatiques	_ 2
3.1 Données fluviales	_ 2
3.2 Les surcotes marines	
3.3 Les vents	
4. Identification des périodes représentatives	
CUADITDE 2. DESLI TATS	-
1 Verietiene des forençes durant le nériode d'étude	_ 7
1. Variations des folgages durant la periode d'étude	
1.2 Los tempôtos	
1.2 Les temperes	- 2
2 Les bilans sédimentaires	
2. Ecs offans securitorianes	
2.1 Evolution par date	- 7
3 L'évolution des pentes	
3.1 Comparaison des cartes de pente	
3.2 Estimation de l'évolution des pentes au droit de la ville	- 3
3.2 Comparaison des profils (2D)	
CHAPITRE 4: DISCUSSION	3
CHAPITRE 5: CONCLUSION DE LA PARTIE IV	- 3
CONCLUSION GENERALE	_ 3
REFERENCES BIBLIOGRAPHIQUES	
ANNEXES	
ANNEXES 1 : Suivi topobathymétrique	_ 3
ANNEXES 2 : Récapitulatif des photos orthorectifées	•
ANNEXES 3 :Impact d'une digue frontale sur l'érosion des fonds (Samat et al 2006)	_
TABLES DES FIGURES	
PARTIE I	

PARTIE 2	364
PARTIE 3	365
PARTIE 4	366
TABLEAUX	369
PARTIE 1	369
PARTIE 2	369
PARTIE 3 :	369
PARTIE 4 :	370
RESUME	369

INTRODUCTION

Contexte scientifique :

Cette nouvelle étude de géomorphologie appliquée aux littoraux sableux, réalisée à l'Université d'Aix-Marseille, s'inscrit dans la continuité des thèses antérieures effectuées sous la direction de Mireille Provansal : Suanez (1997) Bruzzi (1998) et Sabatier (2001). Il est donc essentiel dans un premier temps d'effectuer un récapitulatif rapide des études effectuées, avant de démontrer l'originalité et l'intérêt de ce travail.

Sur le Delta du Rhône, les premiers travaux (Suanez 1997, et Bruzzi, 1998) s'appuyant sur les publications antérieures de Blanc (1976, 1979, 1980, 1985, 1996), Blanc et Poydenot (1993) ou Vernier (1972) portaient sur la partie orientale du delta, de la flèche de la Gracieuse à Faraman. Ils ont abordé l'évolution à moyen terme (50 ans) et proposé des bilans géomorphologiques des flux sédimentaires (Suanez, 1997) et de l'impact des tempêtes (Bruzzi 1998).

Par la suite Sabatier (2001) sur la base des recherches menées par Blanc et Jeudy de Grissac (1982) et de Clairefond (1977), a élargi le champ spatial et temporel d'étude en intégrant l'évolution de la partie immergée sur un siècle, sur l'ensemble du delta. Il a pu mettre en évidence l'évolution des bilans sédimentaires et identifier des cellules littorales, définies par la répartition spatiale des zones préférentielles d'accrétion /érosion et des transferts sédimentaires. Il a proposé, également, une validation des formules de transport sédimentaire sur le delta ainsi qu'une projection de l'évolution du rivage jusqu'en 2030.

Les problématiques de recherches en domaine microtidal sableux dans le Golfe du Lion ne se limitant pas exclusivement au Delta du Rhône, il est important également d'intégrer dans ce bref rappel, les travaux effectués en Languedoc Roussillon.

Les travaux de Durand (1995) ont permis, dans un premier temps, de mettre en évidence l'existence de cellules littorales et d'identifier également le sens de la dérive sédimentaire dominante en Languedoc Roussillon. Akouango (1997) s'est focalisé sur l'étude morphodynamique et hydrosédimentaire de la zone littorale à deux échelles de temps, celle de l'Holocène par une reconnaissance des changements littoraux intervenus depuis l'achèvement de la transgression Post Glaciaire et, celle de l'actuel par un suivi pluriannuel de secteurs côtiers particuliers et l'établissement d'un modèle de circulation littoral, qui interprète les

changements morphologiques de la zone de l'avant côte (zone des barres sédimentaires) et sur la plage. Certain (2002), s'est basé sur une approche analytique évènementielle pour identifier les processus responsables des mouvements sédimentaires de l'avant côte et mettre en évidence la relation hydrodynamique/morphologie sur des sites à barres.

L'ensemble de ces travaux s'est attaché à améliorer la connaissance, d'une part du fonctionnement dynamique général des littoraux sableux (cellules littorales, transit sédimentaire dominant, réponse des plages aux évènement tempétueux) et, d'autre part, du fonctionnement particulier de l'avant côte sur des secteurs, dits naturels (couplage hydrodynamisme et morphologie sur des secteurs à barres). Or le littoral sableux du delta du Rhône, et plus généralement du Golfe du Lion, a été largement affecté, depuis les années 60-70, par les campagnes successives « d'enrochement » en réponse à une érosion significative des plages. Ce constat méritait d'être approfondi : ce travail a donc comme objectif d'effectuer un diagnostic de l'efficacité et des effets d'ouvrages de défense en enrochement sur quelques secteurs représentatifs du Golfe du Lion, et en particulier sur le Delta du Rhône.

Les ouvrages et la perception du littoral

Ces ouvrages en dur sont apparus dans les années 60. Avec l'engouement pour « les vacances au bord de mer », de nombreuses modifications, en étroite relation avec l'accroissement du rythme des constructions sur le littoral ont affecté le Golfe du Lion, (construction de ports de plaisance, à l'image de Port Camargue dont l'inauguration en 1979 en a fait le plus grand port de plaisance d'Europe, ou édification des premiers ouvrages de défense côtières: épis, digues). Conjointement, les épisodes tempétueux de la fin du XX^{éme} siècle, ont fait prendre conscience de la fragilité du littoral et du risque croissant que peuvent générer les évènements météo marins les plus violents sur l'activité humaine sans cesse croissante. Ces épisodes ont constitué un autre déclencheur de l'érosion des plages et de la nécessité du maintien des activités, en particulier le tourisme, dont le développement est lié à la mer. L'implantation de structures de protection côtière sur les littoraux a constitué alors un élément nouveau, un intrant, qui est venu s'intégrer au paysage et au système littoral (figure 1).

Figure 1: Facteurs environnementaux affectant la mobilité des plages (traduit de Basillie et al 1972)

Par la suite la prise de conscience de l'importance économique du littoral et les nombreuses convoitises dont il fait l'objet ont rendu indispensable la création d'une norme juridique chargée d'arbitrer les multiples utilisations du littoral. C'est dans cet esprit qu'a été votée la « Loi littoral » du 3 janvier 1986 (consolidée au 12 octobre 2005). L'intention du législateur était d'associer dans une même loi les principes, parfois contradictoires, d'aménagement, de protection et de mise en valeur du littoral.

Face à la nécessité de préserver les espaces rares, sensibles, de gérer de façon économe la consommation d'espace, et d'ouvrir plus largement le rivage au public, l'édification d'ouvrages de défense en dur est désormais considérée comme une mesure de protection non exclusive. Mais elle constitue, encore aujourd'hui, parfois, la solution retenue.

Finalement, nous disposons aujourd'hui d'un certain recul (vingt à trente ans) sur cette problématique de l'artificialisation du rivage. Ces quelques décennies ont permis d'accumuler des expériences et des données fondamentales. Ce travail bénéficie également, bien évidemment, des résultats acquis par mes prédécesseurs, sans lesquels, il n'aurait pas été envisageable. Ils ont décrit et expliqué les phénomènes généraux dans le golfe du Lion et des dynamiques plus spécifiques sur des secteurs dits « naturels » (Sète : Certain, 2002 ; Site de Rousty : Sabatier, 2001) constituant une base de connaissances et de comparaison essentielle à l'étude de la morphodynamique des secteurs comportant des ouvrages de protection dits « lourds ».

Cadre d'étude :

Cette étude, effectuée au sein de l'UMR-6635 (CEREGE) a bénéficié d'un financement régional PACA. Elle a été réalisée en partenariat avec le Parc Naturel Régional de Camargue (PNRC) et le Syndicat Mixte de la Camargue Gardoise. Elle a reçu également le soutien financier de la Compagnie des Salins du Midi. Cette étude a pu être menée à son terme grâce au matériel acquis et aux méthodes développées ces dernières années au sein de l'équipe Géomorphologie et Tectonique du CEREGE (suivi topobathymétrique, mesures courantométriques, traitement des photos aériennes).

L'intérêt était au départ d'effectuer un diagnostic de l'état du littoral du Delta du Rhône, sur le Domaine d'action du PNRC (du Grand Rhône au Rhône vif, limite de département et de Région) dix ans après les études de la SOGREAH (1993-1994), et sur la partie Gardoise du Delta (du Rhône Vif à Port Camargue), étant donné que les dynamiques sédimentaires font abstraction des limites administratives. C'est donc la première étude qui permet, de prendre en compte l'ensemble du littoral du Delta du Rhône et ses dynamiques. Nous avons élargi, par la suite, notre secteur au Golfe du Lion, jusqu'à la limite ouest du Languedoc en bénéficiant sur ce secteur, de l'expérience des données du Service Maritime et de Navigation du Languedoc Roussillon (SMNLR), et du Centre d'Etude Technique de l'Equipement.

Méthode

L'évolution générale des secteurs d'étude

Pour la partie Bouches du Rhône ce travail s'est appuyé sur des données topobathymétriques existantes, SOGREAH/PNRC (1993-1994, 104 profils), et sur les profils effectués dans le cadre d'une convention entre le CEREGE et la Compagnie des Salins du Midi depuis 2000 (40 profils relevés à un pas de temps saisonnier). Enfin dans le cadre de cette thèse deux campagnes de profils topo bathymétriques et de relevés de la ligne de rivage ont été effectuées durant les étés 2004 et 2005 sur une centaine de profils, sur 75 km de côte (du Grand Rhône à Port Camargue). Pour la partie Languedoc, l'étude s'est appuyée sur les données bathymétriques existantes du SMNLR traitées par François Sabatier (2003, contrat Post-Doctoral).

Au vu de l'évolution spécifique de certains secteurs, l'intérêt s'est porté en particulier sur les sections artificialisées : littoral de Faraman, de Petite Camargue et des Saintes Maries de la Mer. Ce travail ne pouvait pas se limiter, dans le but d'une étude précise de l'impact des ouvrages de défense côtière en dur, au seul Delta du Rhône, des sites ont donc été choisis à titre de comparaison en Languedoc.

Trois types d'emprise spatiale, correspondant à trois approches différentes ont été étudiées, la problématique commune à ces trois types repose sur la question de l'efficacité des ouvrages implantés :

-ont-ils permis un ralentissement voir un arrêt de l'érosion ?

-ont-ils induit des modifications morphologiques et dynamiques de l'avant côte ?

Les ouvrages transversaux:

Les batteries d'épis et les graus aménagés ont été étudiés. Ces ouvrages sont destinés à canaliser les dynamiques longshore afin de limiter la mobilité de l'avant-côté, soumise à des vitesses de transport longitudinal importantes susceptibles de mobiliser une quantité importante de matériel sur les plages.

Implantés perpendiculairement au rivage, ils occupent une place importante dans le paysage du Golfe du Lion ; dans les Bouches du Rhône sur les 75km que constituent les plages du delta sur notre secteur, quasiment la moitié est équipée d'épis, en Languedoc, environ 25 km sont équipés d'épis et de nombreux graus sont aménagés. L'influence de ces ouvrages a été étudiée par de nombreux auteurs. Mais peu d'approches à moyen terme concerne ces équipements, et surtout, très peu de comparaisons avant et après implantation. Notre approche sera essentiellement basée sur la partie émergée des plages et l'étude de l'érosion en aval dérive s'appuiera sur la comparaison de l'évolution diachronique de la position de la ligne de rivage à partir de cartes numérisées, de relevés au DGPS et de la photo interprétation (avant et après l'implantation des ouvrages).

Les ouvrages longitudinaux :

Une digue frontale de près de trois kilomètres, positionnée au niveau de la ligne de rivage a été étudiée sur le littoral des Salins de Giraud (Bouches du Rhône). Cet ouvrage a été édifié pour protéger l'exploitation salinière située en arrière, en bloquant le recul de la plage par une stabilisation « définitive » du rivage.

L'influence d'ouvrages de ce type sur les fonds environnants a été mise en évidence d'un point de vue morphologique par Tait and Griggs, 1990; Griggs *et al.*, 1994 1996 (Californie) ; Basco *et al.*, 1997 (Virginie), Van Baak, 2002 (Hollande). Les travaux de Miles J.R., Russel P.E., and Huntley D.A., (2001) quant à eux, se sont focalisés sur des mesures hydrodynamiques (Royaume Uni).

Mais l'ensemble de ces travaux concerne des plages macro ou meso-tidales et aucune étude n'avait été encore effectuée en domaine microtidal.

Notre approche s'est basée tout d'abord sur un suivi bathymétrique, puis sur une campagne de mesures de courantologies au droit de l'ouvrage.

Etude d'un secteur largement anthropisé : Les Saintes Maries de la Mer.

Le problème couplé de l'urbanisation, de la nécessité de maintenir l'attrait touristique important de la ville et du recul séculaire de la ligne de rivage a fait naître ici une culture du risque particulièrement précoce. En une cinquantaine d'année et particulièrement depuis la fin des années 1970, le littoral des Saintes maries de la Mer a été entièrement artificialisé.

Nous tenterons donc de voir, à partir de la comparaison de relevés bathymétriques depuis 1872 dans quelles mesures la stabilisation de la ville par les enrochements massifs a pu modifier la morphologie du littoral et ses dynamiques.

Le plan adopté s'appuie sur le cadrage qui vient d'être décrit.

La première partie s'articulera, tout d'abord, autour d'une rapide présentation qui listera les caractéristiques des ouvrages en dur implantés sur le littoral concerné (leurs buts et leur fonctionnement général). Elle rappellera ensuite les acquis de mes prédécesseurs, pour établir finalement un diagnostic de l'évolution récente des profils du Golfe du Lion. La deuxième partie quant à elle se focalisera sur l'étude des modifications topographiques induites par la présence de batteries d'épis et de grau aménagés. La troisième partie sera axée sur l'appréhension des modifications bathymétriques et courantologiques devant une digue frontale. Enfin la quatrième et dernière partie concernera l'étude d'un cas particulier, celui de

l'impact morphologique d'un secteur entièrement stabilisé (les Saintes Maries de la Mer) sur le littoral environnant.

PARTIE I : CONTEXTE FONCTIONNEL ACTUEL DU LITTORAL DU GOLFE DU LION

Le golfe du Lion correspond à une vaste ouverture des côtes françaises sur la mer Méditerranée. Son littoral, et le large plateau continental qui le borde ont fait l'objet de nombreuses études. Nous nous sommes donné ici comme objectif, dans cette étude, d'identifier, l'impact des aménagements en enrochements sur la morphogénèse côtière, pour quelques cas dans le Golfe du Lion.

Afin de resituer cette problématique dans un contexte dynamique plus large, nous effectuerons dans cette première partie, une synthèse générale pour le linéaire côtier, s'étendant de Cap Leucate au Grand Rhône. (Figure I.1). Nous présenterons tout d'abord les différents types d'ouvrages en enrochements présents sur ce secteur et leur chronologie de mise en place. Afin de caractériser le contexte dynamique de la zone nous effectuerons par la suite une présentation rapide de l'histoire géologique récente, puis nous aborderons les conditions de forçage, la morphologie et le fonctionnement dynamique général des plages.

Figure I 1 Localisation du secteur d'étude d'ouvrages en enrochement

CHAPITRE 1 : LES EQUIPEMENTS COTIERS

Nous allons dans ce paragraphe effectuer une synthèse rapide sur le principe de fonctionnement théorique des principaux ouvrages maritimes en enrochement que l'on retrouve sur les littoraux sableux. Ce paragraphe s'est appuyé en grande partie sur « *les recommandations pour la conception et la réalisation des aménagements de défense du Littoral contre l'action de la mer* » du Centre d'Etude Technique Maritimes et Fluviales (Avril 1998). Nous effectuerons par la suite une synthèse chronologique des ouvrages implantés entre le Cap Leucate et le Grand Rhône. Une synthèse bibliographique plus précise, en relation avec le type d'ouvrage, sera effectuée pour les ouvrages longitudinaux de haut de plage et les ouvrages transversaux dans les parties suivantes (partie II et III).

On distingue généralement 3 types d'ouvrages en enrochement : les ouvrages longitudinaux, les ouvrages transversaux et les jetées.

1 Les ouvrages longitudinaux

1.1 Les ouvrages longitudinaux de haut de plage

Ces ouvrages ont pour objet d'assurer la protection de la zone terrestre située derrière eux en s'opposant aux attaques frontales de la houle et à l'action des courants. Ils sont généralement implantés devant des installations urbaines, le long de routes en front de mer et plus généralement en bordure du littoral. Ces défenses de haut de plage ont pour caractéristiques communes de n'apporter de protection qu'aux terrains situés immédiatement derrière elles. Bien que les ouvrages soient destinés à assurer une protection contre la mer, leurs modes d'action sont différents et certains d'entre eux peuvent également remplir d'autres rôles. On distingue 3 types d'utilisation :

Les ouvrages de défense : Leur rôle essentiel est de s'opposer à l'attaque de la mer en recevant directement le choc des lames (murs brise mer), en dissipant leur énergie sur un talus d'enrochements (digue à talus), en laissant monter les lames sur une pente douce (digue en pente douce à revêtement lisse).

Les ouvrages de soutènement : Bien qu'ils assurent une protection contre la mer leur rôle est également de maintenir les terres situées en arrière. Il peut s'agir de digue de « front de mer », de perrés.

Les revêtements. Ce type d'ouvrage est placé sur la partie du haut de plage à protéger, pour interposer entre les lames et le sable un placage susceptible de mieux résister à leur action et permettant en général également de raidir les pentes. De tels revêtements peuvent être rigides ou souples.

Différents type d'ouvrages ont été imaginés. Les profils verticaux ou quasi verticaux ne peuvent être admis que pour les ouvrages devant être utilisés pour l'accostage et l'amarrage d'embarcations ou pour des ouvrages légers à réaliser rapidement à peu de frais. Mais ils peuvent provoquer de sévères affouillements quand leur pied se trouve en eau peu profonde c'est-à-dire lorsque la profondeur d'eau y est inférieure à 2 H (H étant la hauteur locale de la houle maximale). La règle essentielle de dimensionnement est de limiter les réflexions sur un tel ouvrage, en n'adoptant pas, dans la mesure du possible, de pente supérieure à 1/3. Aux Pays-Bas, en Allemagne et dans le Nord de la France ont été adoptées des pentes de 1/4 à 1/7. Les pentes « rugueuses » en enrochements dissipent et absorbent efficacement l'énergie des houles, réduisent l'ascension et le franchissement des lames ainsi que l'affouillement.

1.2 Les ouvrages longitudinaux de bas de plage et des petits fonds

Les ouvrages longitudinaux de bas de plage et de petits fonds, dénommés brise-lames, ont pour objet d'une part de limiter la dispersion transversale des matériaux lorsque des transports importants de sédiments s'effectuent dans le profil et d'autre part de provoquer une diminution de l'énergie de la houle permettant aux sédiments en transit de s'accumuler à leur abri.

Un brise-lame exerce deux types d'actions sur les houles s'approchant du rivage. Il diminue d'une part l'énergie des houles atteignant le plan d'eau et la zone côtière situés à son abri, en réfléchissant ou absorbant au moins partiellement l'énergie des houles qui le frappent directement, les houles résiduelles étant transmises par-dessus l'ouvrage (franchissement) et au travers de l'ouvrage (perméabilité). D'autre part il provoque la diffraction des houles à ses extrémités ce qui entraîne une modification du tracé des orthogonales et des crêtes de houle en arrière de lui. De ces deux effets, en découle une modification du tracé des orthogonales de houles générant elles mêmes un remodelage des fonds. Ces actions provoquent le

développement d'une avancée à partir de la ligne de rivage. Si la longueur du brise-lame est suffisante par rapport à sa distance à la ligne de rivage, cette avancée peut rejoindre l'ouvrage, pour former un tombolo. Il n'existe pas actuellement de règles bien définies pour fixer les caractéristiques optimales des brises lame (profondeur d'implantation, longueur et espacement, hauteur). Celles-ci dépendent de l'amplitude de la marée, de la houle (hauteur, période, longueur d'onde) de la pente de l'ouvrage et de la pente des fonds. Il semble en tout état de cause que les brises lames efficaces sont ceux qui ne sont pas franchis par les vagues. Différentes études effectuées par le LCHF (Migniot, 1982, 1989), le CERC (Shore Protection Manual, 1984) ont permis de proposer des valeurs seuils concernant leur implantation dans le profil, leur longueur et espacement, leur hauteur et leur largeur en crête.

Si la distance au rivage d'un brise-lame augmente, son efficacité diminue, mais si cette distance est trop faible, le bassin de dissipation de l'ouvrage est trop petit pour absorber l'énergie de la houle après déferlement. Son implantation résulte donc de trois types de considération :

-Longueur de l'ouvrage par rapport à la côte :

Sur ce thème, les recommandations sont quelque peu différentes selon les organismes

Des études faites au LCHF montrent que pour qu'un brise lame puisse provoquer la formation d'un tombolo se raccordant à l'ouvrage, il faut que les limites d'expansion de la houle, issues de chacune des extrémités de l'ouvrage, se croisent sur le trait de côte, ce qui conduit dans le cas d'une houle normale à la côte, à la relation :

 $l > 1.2(l_c + 0.3L)$

avec 1:longueur du brise-lames

lc : distance du brise-lames à la côte

L :longueur d'onde de la houle au point considéré

Le CERC montre que la formation d'un tombolo peut habituellement être évitée si l<lc. En revanche si la longueur de l'ouvrage devient supérieure à sa distance à la côte, la probabilité de formation d'un tombolo augmente, et pour l> 2lc un tombolo se forme.

En côte ouverte, les brise-lames sont la plupart du temps implantés dans des profondeurs d'eau comprises entre 1 et 8m. Situé par petits fonds, un brise-lame a une action importante en faisant déferler même les faibles houles, mais il est alors soumis à contraintes importantes de la part des lames. Situé par grands fonds, son action est limitée aux plus fortes

houles mais il est peu soumis à l'action des vagues. Selon le cas il peut être émergent ou submersible. Il peut être isolé de la côte ou relié à elle s'apparentant alors à un épi en L ou T.

-Longueur et espacement.

Des brise-lames séparés constituent une solution très fonctionnelle pour une longue section de ligne de côte qui nécessite une transmission de la houle pour éviter la formation d'un tombolo. Ils peuvent ainsi être conçus, de façon à permettre à la plage qu'ils abritent, de s'engraisser suffisamment pour fournir un stock tampon mobilisable pendant les tempêtes tout en maintenant le débit de transport littoral naturel pendant les conditions de houle normales. La quantité d'énergie atteignant la zone abritée par l'ouvrage est régie par l'espacement des brise-lames, et la diffraction de la houle au travers des ouvertures correspondantes. Généralement un accroissement du rapport espacement entre brise lame et longueur d'onde locale de la houle augmente la quantité d'énergie atteignant la zone d'ombre, tandis que les effets de la diffraction décroissent

Le LCHF recommande pour qu'il n'y ait pas d'érosion du rivage entre deux brises lames successifs un espacement e entre deux brise-lames tel que :

 $e < 0.83l_c + 0.5L$

avec lc : distance du brise-lames à la côte

L :longueur d'onde de la houle au point considéré

Le CERC recommande un espacement égal à deux fois la longueur d'onde de la houle (2 L) avec une longueur de chaque ouvrage inférieure à sa distance au rivage.

-La hauteur

La hauteur à donner à un brise-lames dépend de l'objectif poursuivi, dans la mesure où son efficacité dépend en grande partie de sa cote d'arase, qui conditionne la hauteur des houles qui le franchissent sans déferler.

Pour que l'ouvrage soit totalement émergent, il serait nécessaire de l'araser à une cote de l'ordre du niveau de la marée la plus haute augmenté de 1.25 fois la hauteur de la houle maximale. Pour un brise-lames submersible, on peut estimer que l'amortissement de la houle qu'il provoque est égal à 50% si l'ouvrage est arasé à une cote voisine du niveau de l'eau au repos.

-La largeur en crête

Des expériences réalisées en laboratoire ont montré que si la cote d'arase d'un briselames doit être abaissée, cette diminution rendant l'ouvrage plus vulnérable à l'arrière et moins efficace lors des tempêtes, peut être en partie compensée par une augmentation de la largeur en crête. Cette condition s'exprime par la relation

25-5*za* < *b* < 15-5*za*

avec b : largeur du brise lames en crête (m)

za : cote d'arase de l'ouvrage (m)

Globalement l'alimentation en sédiments joue un rôle essentiel dans l'évolution du rivage subissant l'influence d'un brise-lames ; si elle est insuffisante l'ajustement escompté de la ligne de rivage sous la forme d'une avancée ne se développe pas complètement.

2. Les ouvrages transversaux.

Les ouvrages transversaux, dénommés épis, ont pour objet d'arrêter, au moins partiellement, le débit solide et sont généralement mis en œuvre lorsque les mouvements sédimentaires prédominants sont parallèles à la côte. Bien que l'interaction entre les phénomènes côtiers et un épi ou un système d'épis soit mal connue, quelques principes de base peuvent toutefois être retenus en ce qui concerne leur fonctionnement.

-Des épis ne peuvent être utilisés que pour arrêter le transport littoral, ils n'interrompent pas le transport dans le profil et n'attirent pas, sur une zone, du sable qui autrement n'y serait pas passé.

-L'angle d'incidence prédominant des lames fixe la direction du transport littoral net. Si elle est normale à la ligne de rivage, ou bien si la ligne de rivage s'ajuste de façon à être normale à l'incidence des lames par accumulation sédimentaire contre un épi, le débit de transport littoral est alors nul. Ainsi une seconde façon pour les épis de réduire le débit de transport littoral est de permettre à la ligne de rivage de se rapprocher d'une orientation normale à l'incidence des lames. Dans la mesure où le régime des houles commande le transport littoral, il constitue un aspect important de la conception des épis. La fraction du transport littoral qui franchit un épi dépend des dimensions de l'épi, des dimensions de la zone d'engraissement, du niveau de l'eau et du régime des houles.

Les essais du Laboratoire de Génie Civil de Lisbonne ont montré que pour une houle incidente faible ou variable (5 à 10°), les épis normaux à la côte sont les plus efficaces. En revanche pour une incidence de 20°, une inclinaison de 70° des épis est nécessaire.

La longueur d'un épi dépend du marnage, du type de profil de plage, et de la répartition du transport solide le long de ce profil et de la part du transit qu'il est souhaité d'arrêter.

Sur une plage sans marée et sans barre, si le transport par jet de rive domine, les épis courts sont souvent suffisants. Sur une plage soumise à la marée, les épis doivent être plus longs pour être efficaces aux différents niveaux de mer. Sur une plage avec barre, marquant la zone préférentielle des déferlements et donc des mouvements sédimentaires, les épis n'atteignant pas la barre sont pratiquement inefficaces.

En mer sans marée le LCHF préconise des épis de 180m et de 1 à 2m de hauteur. De plus, le ratio de l'espacement à la longueur des épis varie en pratique de 1 à 4. Il dépend du marnage, du régime des houles, de l'angle d'incidence des houles du profil de plage et des caractéristiques des sédiments. Pour les épis courts un ratio de 1.5 à 4 est généralement adopté alors que pour les épis longs, d'après des essais du Laboratoire National de Génie Civil de LISBONNE, le ratio optimal est respectivement de l'ordre de 2.5, 3.5 et 4 pour des incidences de houle de 20°, 10° et 5°.

En tout état de cause cet espacement doit être égal à deux ou trois fois la longueur de la partie de l'épi comprise entre la crête de la berme et l'extrémité de l'ouvrage côté mer.

3. Les jetées.

Nous présenterons rapidement ce type d'ouvrage puisqu'il combine en fait l'effet des deux types précédents. Ces ouvrages implantés au débouché en mer de fleuves ou de passes, peuvent avoir plusieurs fonctions.

-Guidage des courants de marée et des courants fluviaux et façon à modifier le champ de courants dans un sens donné, dans le but de limiter les dépôts dans un chenal.

-Arrêt direct du transport littoral par constitution d'un obstacle à la progression des sédiments analogue à un épi (Port Camargue)

-Amélioration du champ pour la navigation notamment par surpression de courants traversiers.

-Stabilisation de la position d'une passe, qui, en leur absence, se déplacerait le long du littoral.

Les digues, quelles que soient les fonctions qui leur sont attribuées (guidage des courants, protection contre l'agitation de la houle, stabilisation d'une passe ...), jouent généralement le même rôle qu'un épi : engraissement sur la face amont et érosion à l'aval. Les volumes mis en jeu dépendent de la longueur de l'ouvrage de la profondeur d'eau et de son orientation.

4. Les ouvrages dans le Golfe du Lion : localisation et date d'implantation.

La figure I.2, propose une cartographie des principaux ouvrages de protection en enrochement édifiés entre le Cap Leucate et le Grand Rhône.

Elle permet de constater qu'une grande majorité du linéaire côtier étudié est équipé d'ouvrages. Seules les sections entre le Cap Leucate et l'embouchure de l'Aude, la partie centrale du lido du Cap d'Agde à Sète, la partie centrale du secteur entre Frontignan et Palavas à l'Est sont relativement épargnées par les campagnes d'enrochement massif. Le secteur entre Valras et le Cap d'Agde est largement « artificialisé », de nombreux épis, brises lames et digues portuaires ont été implantés ainsi que des digues en enrochement pour protéger les campings du côté de Vias. Plus à l'Est une nouvelle section très aménagée apparaît avec le Port de Sète et les nombreux ouvrages autour de Frontignan. Le Golfe d'Aigues Mortes est particulièrement concerné par l'implantation d'ouvrages en enrochement. Plus à l'Est, le littoral de Petite Camargue avec ses 18km de linéaire côtier équipés d'épis est un autre exemple d'enrochement massif. La ville des Saintes Maries de la mer a commencé relativement tôt à se protéger contre les agressions marines (1946). De nombreuses campagnes d'enrochement s'y sont succédées fabriquant un littoral entièrement artificialisé. Le littoral des Salins de Giraud est également équipé de nombreux épis et à l'Ouest au niveau du phare de Beauduc d'une digue frontale de plus de 3km de long.

Après avoir présenté les caractéristiques de conception, la chronologie et la localisation des principaux ouvrages en enrochement sur notre secteur, nous allons maintenant aborder le contexte dynamique de leur mise en place.

Figure I 2 : localisation et date d'implantation des principaux ouvrages entre Cap Leucate et le Grand Rhône

CHAPITRE 2 : HISTOIRE GEOLOGIQUE RECENTE

Pour mieux comprendre les phénomènes actuellement observables dans la zone littorale du golfe du Lion, et notamment l'érosion marine à l'origine de la mise en place des nombreux ouvrages en enrochement, il est important de rappeler succinctement les héritages constitutifs de cet espace. L'héritage morphologique et sédimentaire du golfe du Lion constitue en effet l'un des éléments du contexte hydrodynamique et sédimentaire actuel de ce secteur, c'est donc à ce titre que j'évoquerai rapidement leur répartition.

Sur le long terme, pluri-millénaire à pluri-séculaire, l'évolution du littoral est due à deux facteurs qui sont le ralentissement de la montée du niveau marin et les apports alluviaux des fleuves. Le bassin versant du Rhône constitue la source principale des apports sédimentaires dans le Golfe du Lion, les bassins versants pyrénéo-languedociens, beaucoup plus réduits en taille, complétant les apports.

La montée du niveau marin liée à la fonte des grandes calottes glaciaires qui existaient lors de la dernière glaciation entre 14000 et 8000 ans BP, d'abord rapide (atteignant jusqu'à 3 cm/an), s'est ensuite progressivement ralentie, le niveau de référence zéro étant atteint à la fin du premier millénaire après J.-C. L'importance de l'apport en sédiment ainsi que le débit du fleuve est conditionnée par le climat et par l'occupation des sols par l'homme du bassinversant, en particulier à partir du Néolithique (début des défrichements et de la mise en culture). Les variations de ces apports ont induit à plusieurs reprises soit des avancées rapides, soit le déplacement et/ou la multiplication des embouchures, soit la stabilisation, soit le recul du trait de côte.

Dans ces fluctuations à long terme, le XX^{ème} siècle occupe une position particulière : il est caractérisé par un déficit sédimentaire dû à la réduction des apports fluviaux dès les années 1920, donc antérieur aux aménagements hydro-électriques du Rhône notamment, et aux dragages. L'héritage sédimentaire, dont ce siècle bénéficie, est donc en cours de démantèlement et non renouvelable. Par suite d'une géomorphologie du littoral différenciée, des secteurs se trouvent juxtaposés, qui sont soit en recul, soit stables ou même en accrétion.

La morphologie actuelle du Golfe du Lion est surtout l'expression des derniers épisodes glaciaires de cette région; mais, elle témoigne également d'événements plus anciens. Les accumulations fossiles sous-marines constituent à ce titre des stocks mobilisables par l'érosion marine et jouent un rôle déterminant dans la réfraction des houles à la côte compte tenu des faibles profondeurs de submersion des ces édifices. Certains de ces édifices sont clairement visibles sur les cartes bathymétriques actuelles.(Figure 1.3). (Bruzzi 1998, Sabatier 2001, Maillet 2005,). Les lobes progradants fossiles constituent donc d'une part une source sédimentaire par remaniement de la partie immergée située à faible profondeur (barre et sommet du front deltaïque) ou des cordons littoraux de la plaine deltaïque et d'autre part une anomalie bathymétrique sous-marine à faible profondeur favorisant la réfraction de la houle.

Figure I 3 Bathymétrie (gauche, source Ifremer) et distribution des sédiments de surface dans la golfe du Lion (droite d'après Aloïsi, 1973)

Le domaine interne (source IFREMER), entre les isobathes 0 et 90 m en moyenne, est caractérisé par une morphologie lisse où les isobathes sont parallèles entre elles et espacées régulièrement. Cette morphologie, généralement d'allure sigmoïde de la côte vers le large, doit la forme de son profil à la diminution rapide, au-delà de 30 m de profondeur, de la capacité de prise en charge des particules par les vecteurs dynamiques du milieu microtidal méditerranéen. Ces conditions environnementales sont à l'origine de la forme en biseau des dépôts holocènes dont l'épaisseur s'annule globalement vers 90 m de profondeur. Les reliefs les plus notables correspondent à des pointements rocheux ou à des sables cimentés (sables de plage ou beachrocks) .(figure I.3)

En terme de dynamiques, la plate-forme continentale est caractérisée par un régime hydrodynamique d'énergie modérée et dominée par les houles. Les plus importantes sont de secteur SE : les houles de 5 m d'amplitude et de période de l'ordre de 8 s représentent 0,1 %

du temps (Millot, 1990). La circulation générale des masses d'eau dans le Golfe du Lion est sous l'influence de la circulation générale anticyclonique en Méditerranée (Millot, 1999).

CHAPITRE 3 : LES CONDITIONS DE FORCAGE

Les conditions de forçage des dynamiques littorales seront présentées pour l'ensemble du Golfe du Lion. Nous considèrerons les apports fluviaux, le vent, la houle ainsi que la marée.

1. Les apports fluviaux

Globalement le linéaire côtier de Cap Leucate au Grand Rhône est alimenté par 6 fleuves principaux, ayant un régime d'écoulement très contrasté marqué par des périodes d'étiage importantes et par des crues parfois dévastatrices au cours desquelles les apports de matériaux à la mer peuvent être importants. On distingue 5 fleuves dans le Languedoc (Aude, Orb, l'Hérault, le Lez et le Vidourle) et un dans les Bouches du Rhône (le Rhône) (Figure I.5). Le réseau hydrographique tributaire du secteur étudié prend principalement ses sources dans les Alpes (Rhône), le sud du Massif Central (Orb et Hérault) et les Pyrénées (Aude).

Figure I 4: principaux cours d'eau et leurs caractéristiques (Durand 1999, Certain 2002, Antonelli 2002)

Si les débits liquides sont relativement bien répertoriés, le débit solide des fleuves en Languedoc est difficile à estimer, faute de mesures suffisantes. Cependant quelques valeurs ont été proposées (D.D.A.F des Pyrénées Orientales et B.C.E.O.M, Koulinsky, 1998) pour, l'Aude et l'Orb (80000 à 100000m³/an)

Quelques rivières descendant de la bordure sous montagneuse, comme par exemple le Libron, ont des bassins versants très peu étendus et arrivent ainsi à la mer avec un débit insignifiant. Le débit maximal du Lez, par exemple, est estimé à 800m³/s à Montpellier. Le Vidourle quant à lui aux crues dévastatrices sur son cours d'eau moyen (1800m³/s à Sommières), débouche aujourd'hui dans les étangs, où se décantent ses alluvions grossières.

Dans les Bouches du Rhône, le Petit et surtout le Grand Rhône, disposent de données en revanche plus complètes. Les crues maximales recensées ont des débits liquides importants 11500m³/s (2003) et 12500m³/s (1856), (Pardé 1925). Le transit des apports solides s'effectue essentiellement pendant les crues. Les crues >3000m³.m⁻¹ véhiculent 80% du transport solide (Pont, 1996, Antonelli 2002, Ollivier 2005), mais la charge solide est piégée à proximité de l'embouchure du bras principal (Sabatier et al., accepté, 2006). Il est important de noter en revanche une faible capacité d'évacuation du Petit Rhône impliquant un déficit sédimentaire d'autant plus important sur le littoral en érosion des Saintes Maries de la Mer (Sabatier et Suanez, 2003).

2. Les vents

Les vents par leur action directe sur la déformation de la surface libre (vague ou houle) et les conséquences en terme de dynamiques sédimentaires qui en découlent, sont des agents météorologiques particulièrement importants à considérer.

Les études précédentes ont montré, dans le golfe du Lion deux régimes de vent dominant (SE et NW,) dont la direction et la force sont directement dépendantes de la dynamique des champs de pression atmosphérique sur l'Europe occidentale et l'Océan Atlantique. La position de l'anticyclone des Açores joue un rôle essentiel. Du décalage de ce centre de haute pression vers des latitudes plus septentrionales en été, résulte des vents de terre très chaud et secs. En hiver, décalé vers le Sud, l'Anticyclone des Açores reste souvent lié par une crête de hautes pressions avec les anticyclones thermiques continentaux eurasiatiques. Son interruption momentanée peut cependant laisser un couloir aux trajectoires dépressionnaires d'Ouest : un coup de vent de direction nord survient presque un jour sur trois de décembre à Février. C'est lors des périodes de transition, quand l'anticyclone des Açores
occupe une position intermédiaire et que les anticyclones continentaux ne sont pas assez individualisés, que les vents de Sud Est deviennent plus fréquents et plus forts.

Les vents de terre, de cadran NW (Tramontane à l'Ouest et Mistral à l'Est) totalisent sur le littoral 58% de fréquence en Languedoc Roussillon et 46% dans les Bouches du Rhône. Les vitesses moyennes sont généralement de 8 à 11 m/s avec des pointes extrêmes de 50m/s mesurées à Perpignan. Les vents de mer soufflent avec une fréquence deux fois plus faible en générale (environ 22% du temps). Ils sont à l'origine des fortes tempêtes à la côte, et atteignent généralement des vitesses moyennes de 11 à 14m/s. En novembre 1982 des vitesses de 46m/s, ont été atteintes à Sète lors d'une tempête extrême. La figure I.4, présente à ce propos la direction et l'intensité des vents supérieurs à 11m.s⁻¹, pour les mois d'hiver, (octobre à mars), morphologiquement reconnus les plus dynamiques (Suanez 1997), à Sète (Languedoc), entre 1950 et 2004, et au Cap Couronne (Bouches du Rhône), entre 1970 et 2003.

Figure I 5: fréquence et direction des vents supérieurs à 11 m.s⁻¹ mesurés en période hivernale (mars à octobre) à Sète (entre 1950 et 2004) et Cap Couronne (entre 1970 et 2003) ; données Météo France.

La figure I.6 montre, à Sète, comme au Cap Couronne une prédominance des vents de terre en période hivernale. Les vents marins les plus violents sont représentés par l'Est (13%) et le Sud Est (19%) au Cap Couronne et le Sud Est (23%) et Sud (10%) à Sète.

Le vent joue un rôle morphogénique soit directement, en remaniant le sable des plages et des dunes, soit indirectement par son effet sur la mer. En milieu marin son action est considérable

sur les fluctuations locales du niveau de la mer d'autant plus qu'il s'accompagne souvent de situations barométriques favorables à ce phénomène. Les vents de mer induisent généralement une forte houle, provoquant un afflux de masse d'eau superficielle importante sur le littoral, conduisant à une élévation du plan d'eau et une diminution de la plage aérienne.

Les vents de terre caractérisés, dans le Golfe du Lion par leur fréquence et leur violence, induisent généralement une forte houle au large et une houle très réfractée à la côte conduisant à un abaissement du plan d'eau. Ces vents prélèvent les sables sur la dune et la haute plage et les déplacent vers la mer.

3. La houle

La houle est un mouvement ondulatoire que subit la surface de la mer sous l'influence du vent. Elle est définie par son amplitude, sa période, sa longueur d'onde, sa célérité, sa direction de propagation. La formation de la houle au large est à mettre en relation avec les champs de vent et leur intensité, leur distance (fetch) et période d'influence. Une distinction est généralement admise entre les vagues ou vague du vent et la houle, ondulation affranchie de l'influence du vent.

La houle détermine le gradient d'équilibre général de la plage et joue un rôle important dans la morphogenèse côtière. Sa hauteur influence la profondeur à partir de laquelle le profil de plage subit son influence et définit par là même l'extension de la bande littorale active. L'énergie des vagues détermine l'intensité de l'énergie potentielle capable de modifier la morphologie des plages. En théorie, la houle au large n'est accompagnée d'aucun transport de matière. En revanche, la houle à l'approche des côtes subit des modifications, des transformations dues à l'influence du fond, qui jouent un rôle important dans la mise en mouvement et le transport des sédiments. Deux phénomènes importants interviennent dans la modification de la houle à la côte.

D'une part le « shoaling » dont la zone d'influence s'étend d'une profondeur égale à la moitié de la longueur d'onde de la houle (seuil de déformation de la houle), jusqu'au point de déferlement. En surface, le phénomène se traduit par un gonflement de la houle, c'est-à-dire une augmentation de la hauteur s'accompagnant d'une diminution de la vitesse de propagation et de la longueur d'onde (la période reste constante). L'étendue de la zone du shoaling dépend donc de la pente de la plage et de la longueur d'onde des houles.

L'autre phénomène est la « réfraction », qui est une adaptation de la ligne de crête des houles à la bathymétrie, qui se traduit par une variation de la vitesse de propagation et un changement de direction de la houle. La convergence et la divergence des orthogonales de houles sont essentielles sur le domaine littoral puisqu'elles modifient l'orientation et l'intensité de l'énergie de la houle à la côte (Pethik, 1984). La convergence des houles s'accompagne d'une concentration de l'énergie, alors que la divergence génère une dispersion de l'énergie des houles à la côte.

La troisième « étape » de la propagation des houles à la côte est le déferlement. Il est la conséquence de l'amplification des déformations de la vague en présence du fond, qui génèrent une perte d'équilibre de son profil du fait de l'augmentation de la cambrure (rapport de la hauteur à la longueur d'onde). Le déferlement est ainsi lié à l'augmentation du différentiel de vitesse entre la face « amont » et la face « aval » de la vague qui provoque le basculement de la première. C'est dans la zone du déferlement que les mouvements sédimentaires sont les plus importants. C'est aussi dans cette zone que sont construits les ouvrages de défense côtière.

Dans le Golfe du Lion, quatre sites d'enregistrement houlographique sont répertoriés (Cap Couronne, La Balancelle, Sète Marseillan, Port Gardian). Afin de caractériser l'ensemble du golfe du Lion nous avons choisi de retenir les données des deux bouées directionnelles de Sète-Marseillan (à l'Ouest) et de Cap couronne à l'Est (Figure I.7). Les données issues de la bouée directionnelle Datawel Waverider, installée, et exploitée par le CETMEF de Brest au large de la flèche de Beauduc (Bouée Port Gardian) en activité, entre 1999 et 2003, ne permettent pas d'obtenir une durée d'acquisition suffisante. Celles de La Balancelle comportant des lacunes fréquentes d'enregistrement (Bruzzi, 1998), ne seront pas non plus, traitées dans ce paragraphe (Tableau I.1).

Bouée	Source	Prof m	Туре	Direction	Enregistrements		Données utilisées		Origines
					Période	Fréquence	Н	Т	
Cap Couronne	LNH- Sogreah	19	houlographe à ultra-sons	oui	1964- 1978	?	Hsig	Tsig	Fiche de synthèse Sogreah (1995)
La Balancelle	PAM	20	bouée Datawell	non	Depuis 1988	10mn	Hsig	Tsig	Données brutes PAM
Sète Marseillan	CETMEF	32	bouée Datawell	non	Depuis 1988	1 à 3 heures	Hmo Hsig	Tpic Tsig	fiche de synthèse CETMEF et données brutes
Port Gardian	CETMEF	20	bouée Datawell	oui	1999- 2003	1 à 3 heures	T pic	Tpic	Données brutes

Tableau I 1: Présentation des différentes sources de données de houle

Malgré l'ancienneté de la série chronologique (1964-1978) et l'éloignement de la station du Cap Couronne par rapport au secteur d'étude, sa situation géographique présente des caractéristiques proches de celles du delta du Rhône. Les données proposées ici sont issues des travaux antérieurs (Vernier, 1972 ; PAM, 1993 ; SOGREAH, 1994 ; Suanez, 1997).

Les données de Sète-Marseillan, (EDF-LNH-Sogreah ; 1984) caractériseront le climat de houle depuis 1988 en Languedoc.

Sur ces deux sites, la fréquence des, houles de beau temps (SW) issues des vents du cadran SW à N, au large du Cap Couronne et de Sète, est de près de 30% à 40%. Ce sont des houles courtes d'une période moyenne de 5 à 6 secondes et leur longueur d'onde peut atteindre 50 mètres. Les houles de tempêtes les plus fortes sont, elles, issues de secteur SE-SSE et S-SSW. Elles sont moins fréquentes (entre 15 et 20%) mais de plus forte puissance. Leur période est de 6 à 10 secondes et leur longueur d'onde peut atteindre 100 à 150 mètres.

Figure I 6: fréquence, direction et période de retour des houles à Sète et Cap Couronne

Les houlographes de Cap-Couronne et Sète indiquent une hauteur de houle moyenne variant de 0,72 à 0,82 m, ce qui paraît relativement élevé si l'on considère que les calmes (H < 0,25 m) représentent entre 16 et 20 % du temps annuel. Cette moyenne élevée est due aux fortes valeurs des houles de tempêtes annuelles. La figure I.7, présente les caractéristiques des houles maximales en termes de fréquence et de direction. Ces houles potentiellement les plus morphogènes se distribuent, sur les deux sites, entre l'Ouest-Sud Ouest et le Sud Est. A Sète,

les houles maximales montrent une provenance essentiellement bi-directionnelle Sud Ouest et Sud Est, alors qu'au Cap Couronne leur provenance est plus étalée (de l'Ouest Sud Ouest au Sud Est). La direction Sud Ouest est la plus largement représentée sur les deux sites, avec respectivement 30% des observations à Sète et 27% au Cap Couronne. Vient ensuite le secteur Sud Est avec 20% des observations à Sète, et les secteurs Sud Sud Ouest et Sud Sud Est, avec respectivement 17% et 15% des observations, au Cap Couronne. Les périodes de retour, de 1, 10 et 100ans, des houles maximales sont de respectivement 5, 7,8 et 9,0 m à Sète et de 6,2, 8 et 10,6 m au Cap-Couronne (EDF-LNH-SOGREAH, 1984 ; STNMTE, 1993). Finalement la partie Est du Golfe du Lion subit des houles dont les amplitudes aux périodes de retours définies plus haut, sont plus élevées qu'à Sète. Leurs directions de propagation relativement étalée entre le SSW et le SE au Cap Couronne s'oppose au caractère bi directionnel des houles à Sète (SW et SE).

Le Delta du Rhône semble donc soumis à une diversité et une intensité plus forte des dynamiques de houle.

4. La marégraphie

Dans le Golfe du Lion l'amplitude de la marée astronomique est peu importante, de l'ordre de trente centimètres. Son effet sur le domaine littoral est donc de ce fait négligeable.

En revanche le type de marée qui nous intéresse particulièrement ici est la marée dite barométrique, en relation avec les changements de pression atmosphérique et le vent. Deux phénomènes marins, ayant une influence importante sur le littoral, caractérisent ces changements de pression.

- la surcote marine : élévation instantanée du niveau marin associée aux basses pressions atmosphériques et aux vents de mer.

- la décote marine : abaissement instantané du niveau marin en relation avec les hautes pressions et les vents de terre.

Ces fluctuations du niveau marin (élévation ou abaissement) ont des impacts morphologiques non négligeables. D'une part elles conditionnent le niveau topographique d'attaque des vagues, c'est à dire que plus la surcote sera importante plus le niveau topographique de l'attaque des vagues sera haut, et inversement. Ce phénomène est important dans le cas de plages étroites comportant ou non un cordon dunaire. D'autre part, elles sont à l'origine de la submersion des plages basses et/ ou larges et de transport sédimentaire dans la zone submergée (Bruzzi 1998). Le même phénomène peut être applicable au domaine immergé, une augmentation ou une diminution relative de la tranche d'eau influençant la position du déferlement. Le phénomène de surcote est un facteur aggravant de la vulnérabilité des côtes sableuses basses telles qu'elles existent dans le Golfe du Lion, surtout pendant les tempêtes.

Les travaux de Ullmann et Pirazzoli (in Méditerranée, soumis) ont permis, à ce propos, à partir de l'analyse horaire de la fréquence et de l'intensité de l'ensemble des valeurs des surcotes entre 1986 et 1995, sur les mois d'"hiver" (Octobre à Mars), d'établir des périodes de retour des maxima marégraphiques, sur deux stations du Golfe du Lion: le Grau de la Dent (Delta du Rhône Salins de Giraud) et Sète (Figure I.8 et I.9).

Figure I 7: Temps de retour des surcotes au Grau de la Dent et à Sète, calculés à partir des données marégraphiques sur la période d'octobre à mars de 1986 à 1995 (Ullamnn et Pirazzoli, in Méditerranée, soumis).

Nous retiendrons de ces deux figures que les niveaux marégraphiques sont généralement plus élevés à Sète qu'au Grau de la Dent, quelle que soit la période de retour retenue. Aussi sur une période de retour annuelle les niveaux marégraphiques de 45cm sont atteints au Grau de la Dent contre 50cm à Sète. La période de retour décennale se caractérise par des niveaux de 60cm au Grau de la Dent et 70cm à Sète et 80 à 95cm pour une période de retour centennale.

Figure I 8: Comparaison des temps de retour des surcotes au Grau de la Dent et à Sète, calculés à partir des données marégraphiques sur la période d'octobre à mars de 1986 à 1995 (Ullamnn et Pirazzoli, in Méditerranée, soumis).

Au final deux secteurs aux conditions de forçages relativement différentes apparaissent : le Delta du Rhône et le Languedoc. Ce dernier subit l'influence des irrégularités d'écoulement de plusieurs fleuves alors que le delta du Rhône est soumis à l'influence exclusive du Rhône. Les vents potentiellement les plus morphogènes proviennent sur les deux secteurs du Nord Ouest et du Sud Est. Les houles principalement bi directionnelle (Sud Ouest et Sud Est) en Languedoc, se distribue entre l'Ouest Sud-Ouest et le Sud Est sur le Delta du Rhône. Ce dernier présente également des amplitudes de houle aux diverses périodes de retour plus élevées qu'en Languedoc, où les surcotes marines sont en revanche plus fortes.

CHAPITRE 4 : LA MORPHOLOGIE DES PLAGES

Nous venons d'effectuer un aperçu des conditions de forçage générales dans le Golfe du Lion. Cet espace, présente des différences non négligeables en termes de morphologie littorale. Nous présenterons donc rapidement les spécificités de la zone d'étude choisie s'étendant du Cap Leucate, dans le département de l'Aude, à l'embouchure du Grand Rhône, dans le département des Bouches du Rhône.

1. Caractéristiques topographiques

1.1 La section émergée

Nous décrirons ici la morphologie globale du profil de plage dans un contexte de fonctionnement naturel. En effet certaines sections particulièrement dégradées du littoral (nous l'exposerons plus loin) ont quelquefois été « reprofilées » par l'implantation d'ouvrages de protection (Petite Camargue, Frontignan, Carnon, Valras, Vias...) et/ou parfois par le développement d'habitations relativement denses (Palavas, Carnon, la Grande Motte...) (Figure I.10). Pour caractériser la morphologie des systèmes sableux du Golfe du Lion nous nous sommes appuyés sur la terminologie utilisée par les différents auteurs ayant travaillé en milieu microtidal méditerranéen (Suanez, 1997, Bruzzi, 1998, Durand, 1999, Sabatier, 2001 ; Certain 2002). Quatre unités ont été individualisées : l'arrière dune, l'avant dune, la plage émergée et la plage immergée.

Figure I 9 : localisation des différents sites et plages

Sur le secteur étudié l'arrière dune est généralement caractérisé par la présence de dépressions vaseuses ou d'étangs. La dune, elle, est généralement inexistante ou peu développée (3 à 5m de haut pour 70 à 80m de large) et assez fortement dégradée. A l'Est, elle est bien développée sur les flèches sableuses de l'Espiguette et de Beauduc, mais elle est très fortement dégradée voire inexistante sur les secteurs très exposés du lido de Sète, du littoral des Salins d'Aigues Mortes et des Salins de Giraud, ainsi que sur les sections urbanisées (Palavas, Carnon, les Saintes Maries de la Mer). Deux raisons essentielles à cela : le régime nettement dominant des vents de terres qui tendent à transporter les sables vers le domaine marin et la forte fréquentation touristique en particulier à l'Ouest du Golfe du Lion (Languedoc-Roussillon) qui a engendré une dégradation importante des dunes (siffle vent, morcellement du cordon). La plage émergée est la plupart du temps étroite : entre, 10 et 60 m pour les secteurs relativement dégradés. Elle peut atteindre plus de 500m pour les sections en accumulation sédimentaire (Flèche de l'Espiguette et de Beauduc).

Figure I 10 Photos représentatives du littoral de Mateille à Sérignan

Le type « Narbonnais » (Durand 1999), du Cap Leucate à Saint Pierre sur Mer, (figure I.9), présente une plage émergée très vaste (250 à 400m de large), avec une dépression (bâche) sur sa partie supérieure (Figure I.10). L'intensité et l'orientation des vents dominants (Tramontane) en fin d'hiver et début de printemps sont, ici, susceptibles de mobiliser une partie du stock sableux apporté lors des tempêtes constructives. Ils sont à l'origine de la formation temporaire à l'aval de la haute plage d'une ou plusieurs lignes continues de dunes en barkhane, transitant progressivement, dans la saison, vers le domaine immergé. (Durand 1999). Sur les plages de type « Saint Pierre-Agde », (Durand 1999), de Saint Pierre sur Mer à Agde, la section émergée peut dépasser 150m de large, mais dans plusieurs endroits (sud-ouest de Valras, Vias, Agde), sa largeur est réduite à nettement moins de 50m. Le même type de plage étroite se retrouve sur le lido de Sète à Agde ainsi qu'entre Frontignan et Port Camargue. Ces plages étroites, très sensibles aux agressions marines, ont un profil en travers quasiment rectiligne descendant de la haute plage vers la basse plage (Figure I.11).

Figure I 11: Photos représentatives du littoral de Marseillan à l'Espiguette

Trois types de plage sont identifiables sur le delta du Rhône (Figure 1.11 et I.12). Les plages larges à très larges, (150 à 500m) se situent sur les secteurs stables ou en accumulation que sont la Flèche de l'Espiguette, le golfe et la flèche de Beauduc ainsi que, dans une moindre mesure, la plage de Piemanson. Ces profils sont généralement caractérisés en été, par la présence d'une dépression de haut et milieu de plage (bâche) et d'un bourrelet de bas de plage bien développé. En hiver, ils adoptent un profil plus régulier résultant d'une arasion du bourrelet et d'une accumulation sédimentaire en haut de plage.

La majorité du Delta du Rhône présente des plages étroites, très dégradées voire inexistantes et largement artificialisées. Elles sont particulièrement sensibles aux dynamiques marines (Petite Camargue, Plage Est des Saintes Maries de la Mer, littoral de Faraman).

Figure I 12: Photos représentatives du littoral des Baronnets à Piemanson

1.2 La plage immergée

La partie immergée, est caractérisée par un système à barre d'avant côte. On rencontre en effet dans le Golfe du Lion une grande variété des types de barres recensés dans le monde. Selon la classification usuelle (Wright et Short, 1985), les plages peuvent être alternativement dissipatives (Narbonnais, Delta du Rhône) ou intermédiaires (Sète, Leucate, Golfe de Beauduc) (Figure I.12). Différents types de barres ont été recensés sur le littoral (Barusseau et Saint-Guily 1981, Akouango 1997, Suanez 1997, Sabatier 2001, Certain 2002) des formes festonnées à l'Ouest (Cap Leucate à Valras) aux formes rectilignes, de l'Est du cap d'Agde au Grand Rhône. Ces morphologies traduisent un fort degré de mobilité au niveau des petits fonds lié à des conditions d'énergie forte à modérée.

Sur la base de travaux antérieurs (Davidson-Arnott et Grennwood 1976, Barusseau et Gilly 1981, Akouango 1997, Certain 2002) les facteurs qui interviennent dans la formation de ces barres d'avant côte sont les caractères de la houle, la pente, les apports sédimentaires et leur granulométrie, et la courantologie dérivée de la houle (onde de bord, courants).

Figure I 13: Caractéristiques des barres d'avant côte dans le Golfe du Lion (Certain 2002, complété)

La formation des barres est selon un modèle simple lié au déferlement (Evans 1940, Miller 1976). La hauteur de la houle et la profondeur au déferlement définissent la position de la zone ou de la ligne de brisance de la vague lorsque le rapport d/H est voisin de 1.3 (d : profondeur et H : hauteur de la houle). L'incidence du tourbillon créé par le brisant et son action érosive sur le sédiment génèrent une fosse et induisent un transport vers le large du matériel libéré qui s'accumule pour former la barre. La pente intervient quant à elle dans la détermination du nombre de barres présentes (Evan, 1940 ; Komar, 1976 ; Barusseau et al., 1994).

Le type « narbonnais » (Figure I.13) comme le type « Saint Pierre-Agde » présentent une plage sous-marine à pente faible, de l'ordre de 1% (entre l'embouchure de l'Aude et Vias) à 0.75%. Elle comporte généralement deux à trois barres en croissant ou festonnées. Le type « Narbonnais » se démarque en revanche par son caractère dissipatif plus prononcé (Barusseau et al., 1991).

Le type « sétois », du Cap d'Agde à Frontignan, quant à lui présente une plage immergée à pente sensiblement plus forte (0.97% en moyenne), traduisant un caractère

dissipatif moins prononcé. Il se définit par la présence d'une succession de deux barres faiblement ondulées ou rectilignes.

La plage immergée de Frontignan à l'Espiguette se caractérise par une pente de l'ordre de 1%, elles est constituée d'une succession de deux barres d'avant côte rectilignes.

2 Granulométrie des plages

Les données granulométriques des plages dans le Languedoc sont issues du catalogue sédimentologique des côte françaises (1984) et du schéma d'orientation pour la protection, la restauration et la gestion des plages du Languedoc-Roussillon (1995).

Figure I 14: caractéristiques granulométriques des plages du Golfe du Lion

Malgré la présence de quelques pointements rocheux (Cap Leucate, Cap d'Agde, Sète), le secteur étudié présente un littoral à prédominance sableuse. Ce sont ces espaces meubles qui nous intéressent.

Sur les plages de type « Narbonnais » (du Cap Leucate à Saint Pierre sur Mer), les sables sont en majorité fins (D50 entre 0.18 et 0.34mm) excepté au Nord du Cap Leucate où il atteint 0.5mm. Les mêmes valeurs se retrouvent sur le type « Saint Pierre à Agde ». Le type

Sétois, (du Cap d'Agde à Frontignan) quant à lui présente une granulométrie un peu plus grossière avec un grain moyen compris entre 0.2 et 0.5mm. Le secteur de Frontignan au Grau du Roi présente une gradation granulométrique longitudinale, les sections les plus à l'ouest (Frontignan-Les Aresquiers) concentrent une fraction sédimentaire plus grossière qui s'affine progressivement vers l'Est.

Le Delta du Rhône se présente comme un ensemble granulométriquement homogène, les sables y sont majoritairement très fins.

En conclusion il ressort entre les différents systèmes de littoraux sableux du Golfe du Lion des différences notables :

-Le secteur Narbonnais, du Cap Leucate à Saint Pierre sur Mer, s'individualise par l'étroitesse des dunes, de larges plages émergées de sable fin au profil en travers comportant une dépression, une plage sous marine à pente faible et à fort caractère dissipatif. De par sa morphologie, il semble être le secteur le moins sensible à l'érosion. En revanche les submersions de la plage émergée peuvent être fréquentes. (Durand 1999).

-Les secteurs De Saint Pierre à Frontignan, ont des caractéristiques assez proches. La dune est généralement peu développée ou inexistante, et la plage émergée est la plupart du temps relativement étroite sans dépression (<50m). Ils sont très sensibles à l'érosion.

-Le secteur de Frontignan au Grau du Roi montre un gradient d'affinement du grain moyen s'organisant Ouest Est. La morphologie émergée témoigne d'une certaine sensibilité du secteur aux dynamiques marines.

Plus à l'Ouest les secteurs de l'Espiguette et du Golfe de Beauduc montrent des plages larges (>200m) en pente faible. Le cordon dunaire y est généralement bien développé (3 à 5m) La partie immergée montre une pente faible à l'intérieur du Golfe de Beauduc (<1%) mais plus forte (>1%) au niveau des flèches sableuses. Un système de barre d'avant côte rectiligne est présent.

Les plages du littoral de Petite Camargue et de Faraman sont en revanche très étroites. Le cordon dunaire est très dégradé voire inexistant, et le plage immergée comportant des barres rectilignes montre une pente de l'ordre de 1%.

CHAPITRE 5 : FONCTIONNEMENT DYNAMIQUE GENERAL DES PLAGES

La définition du contexte dynamique général des plages est basée sur une compilation des données antérieures et de données acquises dans le cadre de cette étude. Nous intégrerons ici une synthèse de l'identification et la quantification des dynamiques sédimentaires, puis nous analyserons la mobilité morphologique générale des secteurs sur le plan transversal à partir de la comparaison d'une série chronologique de 4 ans de profils topo bathymétriques, et sur le plan longitudinal à partir de l'étude des variations du rivage à moyen terme (50ans).

1. Les transits sédimentaires dominants

Ce paragraphe s'attache à effectuer une synthèse des travaux antérieurs (Suanez 1997, Durand 1999, Sabatier 2001, Certain 2002, Sabatier et Suanez 2003), réalisés sur la question des transits sédimentaires dominants et de l'organisation en cellules de la dérive littorale. Les sens des transits sédimentaires et l'organisation en cellules hydro-sédimentaires sont bien identifiés dans le Golfe du Lion. (Figure I.13). On distingue sur le littoral étudié 8 cellules à l'intérieur desquelles l'orientation des flux dominants peut être vers l'Ouest (cellules 2, 3, 5 et 7) ou vers l'Est (cellules 1, 4, 6 et 8)

L'intensité du transport longitudinal revêt une certaine irrégularité dépendante non seulement de l'intensité périodique des forçages météo marins, mais également de la difficulté à déterminer de façon précise ces valeurs. Néanmoins certaines cellules, comme sur le Delta du Rhône (cellules 5 à 8), se démarquent par l'importance des volumes de sables déplacés.

Sabatier (2001) a proposé des valeurs de transit particulièrement fortes sur les cellules 5 et 7 (avec respectivement 300 000 à 700 000 m³/an et 49 000 à 532 000 m³/an) et de moindre ampleur sur les cellules 6 et 8 (75 000 à 360 000 m³/an et 12 000 à 232 000 m³/an) (figure I.15).

Les transits identifiés dans le Languedoc sont moins intenses. La cellule 3 entre Sète et le Cap d'Agde affiche les plus fortes valeurs 100 000 m³/an, alors que les cellules 1, 2 et 4 montrent des transits de l'ordre de 10 000 à 40 000 m³/an (figure 1.15)

L'interaction entre héritage morphologique et forçages météo marins (apports fluviaux, intensité et directions dominantes des vents et des houles), générant les transits

sédimentaires résultants, fait du Golfe du Lion un espace particulièrement morphogène. Nous allons donc dans les prochains paragraphes effectuer une évaluation de l'évolution morphologique récente du littoral du Golfe du Lion. Nous nous appuierons tout d'abord sur l'indentification des bilans sédimentaires à moyens termes, issus de la comparaison de profils topo bathymétriques entre 1988 et 2005, enfin nous présenterons une comparaison de la ligne de rivage avant et après les grandes périodes d'implantation d'ouvrages de protection en enrochement entre 1950 et 2000.

Figure I 15: Direction et intensité du transport sédimentaire dominant dans le golfe du Lion

2. Evolution topo bathymétrique récente

Après avoir effectué une description générale des agents de la morphogenèse du Golfe du Lion, il est essentiel maintenant de définir de façon plus précise la variabilité morphologique affectant ce littoral. Ce chapitre s'appuiera donc sur l'identification des secteurs les plus mobiles à partir de la comparaison de profils topo-bathymétriques.

Une partie de ce travail est effectuée par compilation de données issues d'études précédentes. De nombreux auteurs ont en effet étudié la variabilité des profils de plage dans le Golfe du Lion. Barusseau (1996), Akouango (1998), Durand (1999), Certain (2002) et Pons et Sabatier (2003), en Languedoc Roussillon, et Suanez (1997), Bruzzi (1998) et Sabatier (2001), sur le Delta du Rhône, ont permis d'étudier les caractéristiques et les causes de la variabilité transversale du littoral. Les études ont porté à la fois sur les caractéristiques et les causes de la mobilité des barres d'avant côtes (Barusseau et Saint-Guily, 1981, Barusseau et al., 1994, 1996, Certain et Barusseau, Akouango (1997), Sabatier et Provansal (2000), Certain (2002), mais également sur les bilans sédimentaires à l'échelle du profil de plage (Durand 1999, Sabatier 2001, Pons et Sabatier 2003). Durand (1999) avait proposé un premier bilan sédimentaire de la zone, mais à partir d'une conversion des surfaces en volumes, en s'appuyant sur la détermination de la profondeur de fermeture entre Perpignan et Sète à partir des profils du SMNLR, qui comportaient alors des problèmes de géo-référencement (Pons et Sabatier 2003). Une nouvelle analyse, plus précise de la variation spatiale des bilans sédimentaires le long du littoral du Languedoc Roussillon a donc été effectuée (Pons et Sabatier 2003).

Généralement les relevés ainsi effectués peuvent être utilisés pour quantifier les déplacements sédimentaires en fonction du temps (Dubois, 1988 ; Larson et Kraus, 1994 ; Lee et al., 1998). La quantification de la mobilité de ces profils à plus ou moins long terme traduit la sensibilité de la plage aux agressions marines et permet de déterminer le comportement sédimentaire du littoral en quantifiant les secteurs en érosion/accrétion, les entrées et les sorties de sable sur les plages. Nous utiliserons l'ensemble de ces données pour caractériser la tendance évolutive du littoral du Golfe du Lion.

2.1 Méthodologie

Certains auteurs utilisent des méthodes statistiques pour analyser des profils de plages lorsque ces derniers sont suffisamment nombreux (Clarke et Elirot, 1988 ;Lacey et Peck, 1998; Larson et al., 2000 ; Sabatier, 2001 ; Rihouey, Dehouck, 2006) : l'analyse statistique en composantes principales ou l'analyse spectrale permettent ainsi de hiérarchiser des tendances de comportement des profils. Lorsque les relevés de terrain sont nombreux dans le temps mais aussi dans l'espace, ils peuvent être utilisés pour calculer des bilans sédimentaires sur une zone au comportement homogène (cellule littorale) (De Ruig et Louisse 1991, Sabatier 2001). C'est cette dernière méthode que nous retiendrons.

2.1.1 Recueil des données

La réalisation de profils de plage transversaux réguliers, dont les données sont suffisamment fiables pour être exploitées, est relativement récente dans le golfe du Lion. En Languedoc Roussillon les premiers recensés datent de 1984 (SMNLR) et sur le Delta du Rhône des années 90 (Compagnie des Salins du Midi). Ces données sont pourtant essentielles pour la compréhension du fonctionnement dynamique des plages. Afin d'obtenir des valeurs cohérentes nous avons choisi de nous baser sur un pas de temps représentatif de quatre ans de relevés consécutifs.

Figure I 16 : Localisation des profils topo-bathymétriques

En Languedoc Roussillon, Depuis le début des années 80, le SMNLR réalise, en effet, des relevés bathymétriques sur des profils transversaux au littoral. Cependant compte tenu des lacunes importantes seuls 55 profils présentant des relevés successifs entre 1998 et 2001 ont été compilés et retenus dans cette analyse (Figure I.16 et tableau I.2). Les marges d'erreur ont été évaluées à +/- 20cm en Z et +/-10cm en Y et X.

Cellule	Secteur géographique	DATE	Nom du profil	Cellule	Secteur géographique	DATE	Nom du profil
1	Cap Leucate à Gruissan	1998/1999/2000/2001 1998/1999/2000/2001 1998/1999/2000/2001 1998/1999/2000/2001	"BT087640 "BT096240 "BT098825 "BT101730	5	amargue aux Maries de la Mer	1998/1999/2000/2001 1998/1999/2000/2001 1998/2000/2001 2002/2003/2004/2005 2002/2003/2004/2005 2002/2003/2004/2005 2002/2003/2004/2005 2002/2003/2004/2005 2002/2003/2004/2005	"BT220545 "BT224280 "BT228355 "BT232085 "BT233285 "BT234305 "BT235105 "BT235105 "BT235305 "BT235955
	٩gde	1998/2000/2001 1998/1999/2000/2001 1998/1999/2000/2001 1998/1999/2000/2001 1998/1999/2000/2001 1998/1999/2000/2001	*BT114580 *BT124090 *BT125130 *BT126780 *BT128050 *BT131590		Port Cá Saintes	2002/2003/2004/2005 2002/2003/2004/2005 2002/2003/2004/2005 2002/2003/2004/2005 2002/2003/2004/2005	"BT236875 "BT237905 "BT239155 "BT240100 "BT243240
2	uissan au Cap d'/	1998/1999/2000/2001 1998/1999/2000/2001 1998/1999/2000/2001 1998/2000/2001 1998/2000/2001 1998/2000/2001 1998/2000/2001 1998/2001 1998/2001 1998/2001 1998/2001	*BT132520 *BT133640 *BT134730 *BT136010 *BT137160 *BT137855 *BT137855 *BT138670 *BT138670 *BT140895 *BT141020 *BT141260 *BT141290	6	Saintes Maries de la Mer au Golfe de Beauduc	2002/2003/2004/2005 2002/2003/2004/2005	"BT249285 "BT251245
	e à Gr	1998/2000/2001 1998/2000/2001 1998/2001 1998/2000/2001 1998/2000/2001 1998/2001 1998/2001 1998/2001	*BT142050 *BT142935 *BT143320 *BT145745 *BT149060 *BT152890 *BT153520 *BT153985	7	au Grau de Dent	2002/2003/2004/2005 2002/2003/2004/2005 2002/2003/2004/2005 2002/2003/2004/2005 2002/2003/2004/2005 2002/2003/2004/2005	"BT270430 "BT271560 "BT272640 "BT273210 "BT273740 "BT274510
3	Cap d'Agd Sète	1998/2000/2001 1998/1999/2000/2001 1998/1999/2000/2001 1998/1999/2000/2001 1998/1999/2000/2001 1998/1999/2000/2001	*BT156400 *BT157890 *BT160435 *BT161990 *BT163490 *BT165390 *BT166700		Beauduc la I	2002/2003/2004/2005 2002/2003/2004/2005	"BT275070 "BT275620
4	Sète à Port Camargue	1998/1999/2000/2001 1998/1999/2000/2001 1998/1999/2000/2001 1998/1999/2000/2001 1998/1999/2000/2001 1998/1999/2000/2001 1998/1999/2000/2001 1998/1999/2000/2001 1998/1999/2000/2001 1998/1999/2000/2001 1998/1999/2000/2001 1998/1999/2000/2001	*B116/740 *B1185590 *B1187045 *B118390 *B1189555 *B1191270 *B1192600 *B1194845 *B1194845 *B1194845 *B1194845 *B1196845 *B120690 *B1204935 *B1207905 *B1208985 *B1210820 *B1214395	8	Grau de la Dent au Grand Rhône	2002/2003/2004/2005 2002/2003/2004/2005 2002/2003/2004/2005 2002/2003/2004/2005 2002/2003/2004/2005 2002/2003/2004/2005 2002/2003/2004/2005 2002/2003/2004/2005 2002/2003/2004/2005 2002/2003/2004/2005 2002/2003/2004/2005 2002/2003/2004/2005	"BT276810 "BT277770 "BT278350 "BT278820 "BT280480 "BT281780 "BT281780 "BT284300 "BT284950 "BT286080 "BT286080 "BT286080

Tableau I 2: récapitulatif de la localisation des profils utilisés. La numérotation du nom du profil, correspond à une ligne de référence du SMNLR qui décrit la distance en mètres depuis l'Espagne. Cette numérotation a été étendue au delta du Rhône.

Les données concernant le Delta du Rhône :

Pour cette étude, l'intérêt était au départ d'effectuer un diagnostic, qualitatif et quantitatif de l'état du littoral, sur le domaine d'action du PNRC (du Grand Rhône au Rhône

vif, limite de département et de Région) dix ans après l'état des lieux établi par la SOGREAH (1995), sur la base d'un peu plus de 100 profils entre 1993 et 1994. Dans un souci de cohérence spatiale et dynamique ce diagnostic a été étendu à la partie Gardoise du Delta du Rhône (Rhône vif à Port Camargue) dans le cadre d'un partenariat avec le Syndicat Mixte de la Camargue Gardoise. C'est donc la première étude qui permet, entre autres, d'effectuer un diagnostic topo-bathymétrique sur l'ensemble du littoral du Delta du Rhône.

Cependant les profils issus de l'étude Sogreah (1995) s'étendant seulement jusqu'à -4m ne seront finalement pas intégrés dans ce travail (le calcul des différentiels de volumes aurait été non significatifs de la mobilité réelle du secteur). Nous avons donc choisi de travailler sur un pas de temps plus court, 4 ans, (2002-2005) portant sur des relevés récents et plus fiables. (Figure I.16 et tableau I.2).

Dans le cadre de cette thèse deux campagnes de profils topo-bathymétriques ont été effectuées à l'été 2004 et 2005 portant sur une centaine de profils pour environ 75km de côte, de la digue de Port Camargue, à l'Ouest, à l'embouchure du Grand Rhône à l'Est (Annexe 1). Les profils sont effectués en domaine émergé et immergé, de l'arrière dune (quand elle est présente) à -10/-12m de profondeur, et, dans la mesure du possible, sur les traces des profils effectués par la SOGREAH. Le matériel utilisé (tachéomètre électronique TC 705, Trimble Pro XR, base et mobile, et sondeur Triteck) a permis d'obtenir des données géoréférencées avec une précision optimale des relevés (en X, Y et Z), en autorisant, en bathymétrie, une acquisition instantanée des valeurs de sonde (Z) et de position (X, Y) toutes les secondes, couplée à une correction, par post traitement sur station de travail, du niveau instantané du plan d'eau. Les marges d'erreur ont été évaluées à +/- 20cm en Z et +/-10cm en Y et X.

2.1.2 Traitement des données

Pour harmoniser le traitement de l'ensemble des profils et en effectuer une comparaison pertinente, une macro Excel nommée « *Capapro* » développée au Centre d'Etude Technique de l'Equipement développé (Pons et Sabatier 2003) a été utilisée. Cet outil, destiné à établir une méthode d'analyse et d'interprétation des profils bathymétriques du SMNLR, a été réalisé dans le but de proposer une méthodologie de suivi et de quantification de l'évolution du littoral au moyen des profils de plage, en Languedoc Roussillon. Elle a été étendue et appliquée au traitement des profils dans le Delta du Rhône.

Capapro s'est appuyé sur une synthèse bibliographique (Pons et Sabatier, 2003) de rapports de bureau d'études et de recherches scientifiques appliquées à l'ingénierie, pour déterminer des indicateurs simples pouvant permettre de quantifier l'évolution d'un profil de plage (accrétion, stabilité...). Cet outil aborde cinq thèmes principaux portant sur, le bilan sédimentaire, la morphologie des barres d'avant côte, la détermination de la profondeur de fermeture, la recherche du profil d'équilibre et le rôle de la houle. *Capapro* permet aussi d'harmoniser et d'organiser de façon automatique les séries de données afin d'obtenir des éléments comparables. Ainsi afin de corriger les écarts de route lors des mesures, la macro permet d'effectuer une projection orthogonale des points de sonde (X et Y) sur une droite définie par l'azimut du profil (figure I.9).

Cette dernière fonction a été utilisée dans ce travail, car, malgré l'utilisation d'un utilitaire de navigation au GPS durant l'acquisition des données, il s'est avéré que l'écart effectué par l'embarcation par rapport à la trace souhaitée pouvait générer des erreurs au niveau de la sortie et de la superposition des profils (Figure I.17). Parmi les nombreux paramètres pris en compte par *Capapro*, dans le but de caractériser de façon générale la mobilité transversale nous retiendrons uniquement, des différents secteurs, les bilans sédimentaires et les valeurs de la profondeur de fermeture.

Figure I 17: Méthode de projection de la trace de relevé.

• Le calcul des bilans sédimentaires

Les bilans sédimentaires sont produits à partir de la comparaison de mesures topobathymétriques sur un profil de plage. Nous ne traiterons pas ici de la mobilité propre des différentes unités morphologiques (dunes, barres d'avant côte...) mais nous intègrerons simplement l'ensemble du profil, de l'arrière dune, quand elle est prise en compte, jusqu'à la profondeur de fermeture en mer.

Il est important de signaler que le calcul des volumes globaux est limité, à la côte, compte tenu de l'absence de relevés systématiques du rivage et/ou des petits fonds (barre interne). Afin d'harmoniser les résultats nous avons, de ce fait, reporté l'ensemble des bilans en m³.an⁻¹ sur une surface d'un mètre carré (m³.m².an⁻¹). Afin de déterminer l'évolution à moyen terme, entre 3 et 5 ans (Stive et De Vriend, 1995) nous avons calculé les bilans sédimentaires sur 4 années consécutives, 1998-2001 dans le Languedoc et 2002-2005 dans les Bouches du Rhône. Notons que, sur le Delta du Rhône, le manque de données en 2001 n'a pas autorisé de retenir une série temporelle concomitante à celles sélectionnée en Languedoc.

• La profondeur de fermeture

La profondeur de fermeture du profil (Dc) correspond à la limite sous-marine à partir de laquelle on n'enregistre plus de variations significatives des profils bathymétriques (Hallermeier, 1981).

Cette valeur est fonction notamment des conditions dynamiques des secteurs (orientation et amplitude des houles de tempêtes dominantes) et de la précision de la mesure elle-même. Même si les études menées par Nicholls (1998) ont permis de déterminer une profondeur de fermeture avec une précision de 0.03/0.06m, la littérature propose habituellement, avec les moyens bathymétriques courants, des marges d'erreur de l'ordre de 0.15 à 0.3m (Hallermeier, 1981, Jiménez et Sanchez-Arcilla, 1993, Barusseau et al., 1994 ; Hinton et Nicholls, 1998). Certains travaux, (Capobianco et al., 1997; Nicholls et al., 1998) ont également montré que la valeur de Dc est fonction du pas de temps considéré et de la durée d'observation Il est important de connaître les valeurs des profondeurs de fermeture notamment pour le calcul de volume de sable disponible dans le cadre de projet de rechargement sur des secteurs en érosion (CUR 1987, Houston, 1996) ou pour la détermination des budgets sédimentaires au sein de cellules littorales (Jiménez et Sanchez-Arcilla,1993 ; Kana,1995 ; Suanez, 1997 ; Durand 1999 ; Sabatier 2001). Plus généralement la profondeur de fermeture permet de définir l'extension transversale de la mobilité d'un profil de plage très utile pour évaluer la réponse morphologique globale des fonds aux dynamiques marines. Le paramètre donne finalement une bonne image de la vulnérabilité des plages, c'est donc sous cet angle qu'il est utilisé.

Figure I 18: Exemple de détermination de la profondeur de fermeture. Dc est déterminée à partir d'un seuil minimal de l'écart type qui s'appuie sur la marge d'erreur des relevés bathymétriques.

La méthode qu'utilise *Capapro* est basée sur la comparaison des séries de profils. La profondeur moyenne, Z, et l'écart type, s, qui leur sont associés sont calculés pour chaque point(Y), calculé tous les 5 m. Dc est définie lorsque l'écart-type n'enregistre plus de variations significatives, en tout cas inférieures à la marge d'erreur de la mesure en Z. Ainsi à chaque profil étudié est associé une valeur de profondeur de fermeture (figure I.18)

En Languedoc Roussillon, ces valeurs ont été calculées par Pons et Sabatier (2003) et Sabatier et al (2004). L'ensemble de leurs résultats sur la partie Ouest du Golfe du Lion sera simplement repris et cartographié à titre d'information. Nous avons calculé la profondeur de fermeture dans les Bouches du Rhône, pour les 34 profils, entre le Rhône Vif et le Grand Rhôn) portant sur la période de 2002 à 2005.

2.2 Résultats

2.2.1 Les bilans sédimentaires

Les bilans sédimentaires calculés, nous l'avons vu plus haut, portent sur une échelle temporelle de 4 ans.

La partie Languedoc du Cap Leucate à Port Camargue, très « rectiligne », montre des bilans relativement homogènes avec des valeurs allant de $-0.3m^3.m.an^{-1}$ à $+ 0.2 m^3.m.an^{-1}$. De manière générale, l'érosion domine sur l'ensemble de la zone mais dans le détail, on observe

quelques secteurs en gain sédimentaire (Est du Cap d'Agde). A l'extrémité orientale, la pointe de l'Espiguette se singularise comme étant le seul secteur en accumulation sédimentaire importante (Figure I.19).

Globalement le secteur de Cap Leucate à Saint Pierre sur Mer, est relativement stable avec des valeurs de gain faible (0 à +0.1m³.m.an⁻¹) et des pertes minimes (-0.1 m³.m.an⁻¹). Vers le Nord Est, la côte qui s'étend jusqu'au Cap d'Agde présente une érosion plus marquée. Les plus fortes valeurs (-0.1 à -0.3 m³.m.an⁻¹) se retrouvent au niveau de Valras, où l'édification d'importants ouvrages de protection a généré une accélération de l'érosion en aval dérive (Durand 1999). Le lido du Cap d'Agde à Sète est, quant à lui, en proie à une lente érosion. Elle est largement prédominante à l'Ouest mais de faible ampleur (0 à -0.1 m³.m.an⁻¹). Plus à l'Est les ouvrages édifiés ont permis ici un maintien du sable au niveau du rivage. Le secteur de Frontignan à Port Camargue parait plus homogène avec des valeurs d'érosion proches de - 0.1 m³.m.an⁻¹ (Figure I.19).

Figure I 19: Bilans sédimentaires dans le golfe du Lion

Rappelons que sur le delta du Rhône, nous ne disposions pas de séries de profils suffisamment étendues dans le temps sur le secteur en accrétion du golfe de Beauduc. Cependant les profils étudiés sur les sections les plus sensibles montrent des bilans sédimentaires beaucoup plus hétérogènes et surtout beaucoup plus déficitaires qu'en Languedoc Roussillon. Les variations volumiques se répartissent entre +0.11m³.m.an⁻¹ et - 0.6m³.m.an⁻¹ pour les zones les plus exposées.

Le secteur du Rhône Vif aux Saintes Maries de la Mer, est particulièrement sensible dans sa partie centrale (Figure I.10). Cet ensemble présente des valeurs d'érosion des fonds de l'ordre de -0.1 à -0.3 m³.m.an⁻¹ qui diminuent progressivement aux abords de l'embouchure du Petit Rhône. Directement à l'Est des Saintes Maries l'érosion se réactive avec des pertes de l'ordre de -0.1 à -0.3 m³.m.an⁻¹ puis 0 à -0.1 m³.m.an⁻¹ plus à l'Est. Au niveau du phare de Beauduc et des Salins de Giraud, le déficit y est plus prononcé en particulier au droit de la digue de Véran (-0.3 à -0.6 m³.m.an⁻¹). L'érosion diminue progressivement vers l'Est (Grau de la dent) puis se réactive avec des valeurs de 0 à -0.1 m³.m.an⁻¹ au niveau de la Courbe à la Mer, pour s'infléchir une nouvelle fois jusqu'à l'embouchure du Grand Rhône (0 à +0.1 m³.m.an⁻¹).

Les bilans sédimentaires établis sur quatre années (2002-2005 sur le delta du Rhône et 1998-2001 en Languedoc) ont en tout cas permis de caractériser la tendance récente sur le littoral du Golfe du Lion et d'identifier les secteurs les plus sensibles à l'érosion. Nous analyserons par la suite, les secteurs équipés des Saintes Maries de la Mer et du Salin de Giraud entre autres, pour lesquels nous montrons dans cette analyse que l'érosion sous marine est évidente malgré la construction des enrochements.

2.2.2 Profondeur de fermeture.

Les valeurs de profondeur de fermeture varient de -2 m à des profondeurs supérieures à -10 m (Figure I.20 et I.21). De manière générale, la profondeur de fermeture est atteinte entre -6 et -8 m pour 45% des profils et se situe entre -4 et -6 pour 36% d'entre eux.

Elle est pratiquement régulière au sein de la cellule 1 (Cap Leucate à Saint Pierre) et 3 (Cap d'Agde à Sète) irrégulière dans la zone de Valras (cellule 2) et Palavas (cellule 3) avec un approfondissement dans la partie centrale. Le golfe d'Aigues Morte quant à lui présente des valeurs beaucoup moins profondes de l'ordre de -4m. Les secteurs montrant les profondeurs les plus faibles se situent à l'est des Saintes Maries de la Mer (cellule 6) et les plus fortes au droit de la digue de Véran (cellule 7) et en Petite Camargue (cellule 5). Globalement la profondeur de fermeture est de plus en plus profonde dans le sens du transit dominant sur le delta du Rhône confirmant les travaux de Sabatier (2001), de Garcia et al., (1995) sur le delta de l'Ebre et de Hinton (2000) sur les cotes Hollandaises. En revanche en Languedoc la distribution est beaucoup moins homogène.

Figure I 20 Variations longitudinales de Dc dans le golfe du Lion (points) entre 1998 -2001 (Cell1, Cell2, Cell3, Cell4, Sabatier et al., 2004) et 2000-2005 (Cell5, Cell6, Cell7, Cell8, cette étude). Les cercles blancs indiquent un rechargement et les triangles indiquent la présente d'un substrat dur sur le profil (Sabatier et al., 2004)

Figure I 21: Cartographie des variations de Dc dans le Golfe du Lion. Dc est déterminée entre 1998-2001 en Languedoc Roussillon et 2000-2005 dans le Delta du Rhône.

3. Evolution de la ligne de rivage depuis 50 ans dans le Golfe du Lion

Les bilans sédimentaires d'une plage peuvent aussi être appréhendés en considérant les variations transversales de la position du rivage à petite échelle (relevé DGPS, Images satellites, photo aériennes). Les avancées vers la mer ou vers la terre traduisent des tendances à l'accrétion ou à l'érosion.

En Languedoc, Durand (1999) a mis en évidence, sur la période de 1935 à 1997, une relative stabilité du littoral narbonnais entre Cap Leucate et Saint Pierre sur Mer. Le faible degré d'anthropisation du rivage a limité les déséquilibres dans l'évolution. Les seules érosions se rencontrent à la hauteur de la zone urbanisée de Port la Nouvelle (-8m.an⁻¹), en aval dérive de cette localité et de Narbonne Plage, ainsi que sur la plage de Gruissan (-0.5 m.an⁻¹). Ce même auteur montre également que la moitié du secteur de Saint Pierre sur Mer au Cap d'Agde connaît un recul contrasté de la ligne de rivage évalué entre -1 et -5 m.an⁻¹. Il est très largement prédominant, à l'Est de la Redoute, tandis qu'à l'Ouest, la stabilité et l'accrétion l'emportent. Le lido de Sète au Cap d'Agde, est en proie à une lente érosion sur toute la période d'étude. Le recul est largement prédominant (68% du linéaire côtier) mais de faible ampleur tout comme sur le littoral de Sète au Grau du Roi. (Durand 1999)

L'évolution du littoral du delta du Rhône est très rapide et caractérisée par un recul supérieur à -5m.an⁻¹ depuis la fin du XIX^{ème} siècle (Suanez et Provansal 1998, Sabatier et Suanez 2003). Elle est caractérisée par deux tendances d'ordre pluri-décennales s'articulant autour de d'une période charnière (Sabatier 2001). Entre 1944 et 1962 la stabilisation de l'embouchure du Rhône coïncide avec une forte instabilité du littoral, puis à partir de 1962 la valeur du recul diminue. Cette tendance est attribuée à un phénomène de relaxation du système littoral, après le déséquilibre induit par la réduction des apports fluviaux (Sabatier 2001, Sabatier et al., in press). L'érosion d'une grande partie du linéaire côtier vient alimenter les flèches de Beauduc et l'Espiguette, en forte accrétion (Blanc, 1977; Suanez, 1997; Sabatier, 2001).

Dans l'ensemble, les différentes études portant sur l'évolution de la ligne de rivage dans le Golfe du Lion, ont démontré une évolution très différenciée dans l'espace et plus ou moins irrégulière dans le temps, en relation avec la fréquence et l'intensité des tempêtes et des crues. Le rivage du Languedoc, globalement en recul, affiche par contre des érosions moins marquées qu'en Camargue.

Par ailleurs la forte influence des ouvrages de protection sur l'évolution de la ligne de rivage, depuis ces trente dernières années, a été démontrée (Durand 1999, Suanez 1999, Suanez et Bruzzi 1998, Sabatier 2001, Sabatier et al., accepté). Si ces ouvrages ont quelquefois permis de stabiliser localement le rivage, leur efficacité à long terme n'est pas prouvée. L'ensemble des auteurs supposent que leurs effets, combinés avec la réduction des apports fluviaux et une certaine recrudescence à la fois de la fréquence et de la force des tempêtes lors des deux dernières décennies, seraient à l'origine du net déficit enregistré par l'ensemble des secteurs depuis les années.

Nous nous proposons donc d'évaluer l'impact de ces ouvrages sur l'évolution des variations de la ligne de rivage depuis 50 ans sur le secteur du Cap Leucate au Grand Rhône.

3.1 Méthode

L'étude de l'évolution de la ligne de rivage dans la Golfe du Lion s'est appuyée sur deux méthodes, basées sur la superposition diachronique des traits de côte avant et après aménagements. La comparaison de l'ensemble de ces mesures, permet de calculer une évolution surfacique et des vitesses moyennes de recul du rivage. Pour cela nous avons sélectionné trois dates, et deux périodes représentatives

	Languedoc Rou	ssillon	Delta du Rhône		
	Carte topographique IG	N 1952-1953-	Photographie aériennes 1953-1954-1955		
1950	1954 réalisée à partir des	campagnes de	1:25000 et 1:300	000/ (Sabatier et Suanez	
	photo aérienne de 195	0 (1:50000)	2003)		
1977		IFN missi	on littorale		
2001	Orthophographie IGN				
2005		Rele	vé au DGPS	(cette étude)	

Tableau I 3: source des relevés de la ligne de rivage.

La première période, entre 1950 et 1977 (tableau I.3) sera considérée comme représentative du fonctionnement naturel de l'ensemble du Golfe du Lion, avant les grandes campagnes d'aménagement côtiers issues principalement de la Mission Racine des années 60 (Cf introduction). La deuxième période, 1977-2001/2005, sera considérée comme représentative du fonctionnement « influencé » du littoral, après l'implantation des aménagements de protection. Le décalage temporel entre les différentes campagnes de photographie aériennes n'a pas permis d'utiliser des séries de données spatialement continues pour une même date. Seule l'année 1977 a pu être retenue comme date représentative du début des grandes campagnes d'enrochement.

Cette étude s'est donc appuyée, pour chacune des deux périodes, d'une part sur une évaluation des variations de surface pour chaque cellule hydro sédimentaire à partir du logiciel MAPINFO, et d'autre part sur l'évaluation des variations transversales locales du rivage au niveau des profils (SMNLR/CEREGE) suivis précédemment, du Cap Leucate au Grand Rhône.

Il est évident que la discontinuité des campagnes de photographies aériennes, l'influence des évènements météo marins avant les prises de vue, les effets des tout premiers ouvrages (beaucoup de ports de plaisance ont été construits entre 1960 et 1970) et les campagnes de rechargement en particulier, en Languedoc, augmentent la difficulté de l'analyse. Nous faisons cependant l'hypothèse que la durée pluri décennale de notre étude permet de compenser ces lacunes.

3.2 Résultats

3.2.1 Les variations en surface de la ligne de rivage

Les résultats de l'étude des variations de surface pour chaque cellule hydro sédimentaire (tableau I.4), permettent de définir des cellules aux dynamiques relativement différentes.

		1950-1977		1977	-2001	Evolution	
		+	-	+	-	Evolution	
Cellule 1	Bilan	55000	-955600	338000	-152000	inversion de tendance	
	Bilan total	-90	0600	186000		de l'érosion à la	
	Bilan m²/m/an	-1	.37	0.	.31	stabilité	
	Bilan	148000	-406000	377000	-528000	Deletive stebilité à	
Cellule 2	Bilan total	-258000		-151000		Relative stabilite a	
	Bilan m²/m/an	-0	.24	-0	.16	rerosion	
	Bilan	0	-580000	33000	-376000		
Cellule 3	Bilan total	-580000		-343000		Diminution de l'érosion	
	Bilan m²/m/an	-1	.37	-0	.91		
	Bilan	151000	-874000	365000	-477000		
Cellule 4	Bilan total	-723000		-112000		Diminution de l'érosion	
	Bilan m²/m/an	-0	.72	-0	.12		
	Bilan	225000	-1810000	1400000	-2000000		
Cellule 5	Bilan total	-1585000		-600000		Diminution de l'érosion	
	Bilan m²/m/an	-2	.49	-().9		
	Bilan	1193000	-424000	1000000	-936000	Diminution do	
Cellule 6	Bilan total	769000		64000		Diminution de	
	Bilan m²/m/an	1.	58	0.	.12	raccretion	
Cellule 7	Bilan	600000	-1094000	900000	-1514000	Augmentation do	
	Bilan total	-494	-494000		4000	Augmentation de	
	Bilan m²/m/an	-1	.63	-1	.95	rerosion	
	Bilan	80000	-577000	300000	-800000		
Cellule 8	Bilan total	-497000		-500000		Stabilité de l'érosion	
	Bilan m²/m/an	-1.34		-1.3			

Tableau I 4: tableau récapitulatif des bilans surfaciques par cellule avant (1950-1977) et après (1977-2001 en Languedoc et 1977-2005 sur le Delta du Rhône) les grandes périodes d'aménagement.

La cellule 1, définie entre le Cap Leucate et Saint Pierre sur Mer , témoigne d'une inversion de tendance, le bilan en surface passe d'une situation érosive (- $1.37m^2/m/an$) entre 1950 et 1977 à une tendance à la stabilité ($0.37 m^2/m/an$) après 1977. La cellule 2 (de Saint Pierre sur Mer au Cap d'Agde) tout comme la cellule 8 (Grau de la Dent au Grand Rhône) montrent une tendance à la stabilisation. La première enregistre des variations de surface passant de - $0.24 m^2/m/an$ en première période à $0.16 m^2/m/an$ en deuxième période et la deuxième maintient un taux de perte de l'ordre de $-1.3m^2/m/an$. Les cellules 3, 4 et 5, s'individualisent par une diminution relative de l'érosion surfacique (facteur 0.1 à 0.6). Le Golfe de Beauduc (Cellule 6) se distingue par une diminution de l'accrétion. La cellule 7 (Grau de la Dent au Phare de Beauduc) dénote par une augmentation de l'érosion passant de - $1.63 a -1.95 m^2/m/an$ (figure I.22).

Il est essentiel de noter ici que ces résultats correspondent à des bilans généraux de surface. Nous ne tenons pas compte des variations verticales du domaine immergé (ex : formation de bermes), ni de la plage immergée. Ces chiffres font état uniquement de la tendance dynamique de la ligne de rivage avant et après les grandes campagnes d'enrochement. Ils ne constituent en aucun cas un bilan sédimentaire général à l'intérieur de chaque cellule.

De plus ces résultats sont des valeurs globales par section et cachent parfois une forte hétérogénéité ponctuelle des variations de surface en l'intérieur même des cellules.

Figure I 22: Bilans surfaciques (m²/m/an) des cellules avant (1950-1977) et après (1977-2001) en Languedoc Roussillon et 1977-2005 sur le Delta du Rhône) les grandes périodes d'aménagement.

Après avoir décrit l'évolution surfacique sur 50 ans au niveau des cellules, nous abordons maintenant les variations du rivage au niveau de l'ensemble des profils étudiés à moyen terme.

3.2.2 Les variations locales de la ligne de rivage.

Les variations du rivage sur l'ensemble des 171 profils du SMNLR et CEREGE, révèlent des évolutions locales qui, seront présentées ici dans un premier temps au niveau des cellules hydro sédimentaire (figure I.23) puis cartographiés (figure I.24).

La cellule 1, entre Cap Leucate à Saint Pierre sur Mer, montre, un contraste important entre la relative homogénéité des valeurs de recul ru rivage des premiers kilomètres (jusqu'au kilomètre 70) et la forte irrégularité de la fin de cellule (kilomètre 70 à 100). Les premiers kilomètres montrent, une augmentation des valeurs de recul du rivage en deuxième période (entre 0 et-0.5m.an⁻¹) alors que dans le même temps à partir du kilomètre 70, l'évolution du rivage oscille entre -1 et +1.5m.an⁻¹

Figure I 23: Variation du rivage avant (1950-1977) et après les grandes périodes d'implantation des ouvrages 1977-2001 en Languedoc Roussillon et 1977-2005 sur le Delta du Rhône)

Sur la cellule 2, entre Saint Pierre sur Mer et le Cap d'Agde. les variations fluctuent entre +2 et -2.5m.an⁻¹ pour la première comme pour la deuxième période. La section la plus à l'Ouest est la plus stable voire en légère accrétion en revanche certains points comme au kilomètre 124 ou 128 montrent une accentuation particulière de l'érosion avec respectivement -2 et -2.5 m.an⁻¹. Le premier est situé en aval du grau aménagé de l'exutoire de l'Aude, et le deuxième correspond à la section en aval dérive des ouvrages de Valras (Durand 1999). La section entre les kilomètres 135 et 142, en aval dérive du Cap d'Agde et des ouvrages sur le secteur de Vias, témoigne également d'une forte accentuation ponctuelle de l'érosion. Les variations du rivage passent en effet de valeurs positives en première période (en moyenne 0.5 m.an⁻¹) à des valeurs négatives, de l'ordre de -1 m.an⁻¹ en deuxième période.

La cellule 3 entre le Cap d'Agde et Frontignan présente deux sections bien individualisées. La plus à l'Ouest entre le kilomètre 154 et 158 accuse une accentuation de l'érosion durant la deuxième période alors que les dix kilomètres suivants présentent un ralentissement de l'érosion pendant la même période. A l'extrême Est de la section, les bilans sont stables dans le temps mais en forte érosion -2m.an⁻¹.

La cellule 4, entre Frontignan et Port Camargue, présentant des valeurs d'érosion relativement homogènes 0.5 et 1m.an⁻¹ entre 1950 et 1977, témoigne d'une forte irrégularité la période suivante. Des sections en érosion avant l'implantation des ouvrages présentent un gain la période suivante à l'intérieur des casiers d'épis mais une accentuation des tendances érosives en aval dérive de ces ouvrages (Frontignan, Carnon). L'Est de la section est relativement stable durant les deux périodes d'étude.

La cellule 5, entre Port Camargue et le Petit Rhône, qui en termes de bilans sédimentaire en surface présentait une diminution générale des valeurs d'érosion, présente une évolution relativement homogène dans le sens où la tendance générale est respectée entre la période avant et après l'implantation des ouvrages. On assiste à une forte avancée du rivage au niveau de la flèche de l'Espiguette et contre la digue de Port Camargue (plus de 15m.an⁻¹ (1977-2005) contre -5 m.an⁻¹ en 1950-1977), et une érosion bien marquée en Petite Camargue. Sur ce secteur, entre 1977 et 2005 les vitesses de recul se sont accélérées, en particulier aux Baronnets, en aval dérive d'épis,(km 226) où le littoral passe d'une situation de stabilité à une forte érosion (-5 m.an⁻¹). Globalement l'ensemble de la Petite Camargue des Baronnets jusqu'aux Quatre Maries (km 237) subit une accélération de l'érosion d'un facteur 2 à 4 après 1977.

La cellule 6, entre le Petit Rhône et la flèche de Beauduc, présente le même type d'organisation dynamique que la cellule précédente. Deux sections bien individualisées s'opposent : à l'Ouest, au niveau des Saintes Maries de la Mer, où on assiste à l'implantation massive d'ouvrages en enrochement, les vitesses de recul sont importantes et s'accentuent à l'Est de la ville après 1977 (facteur 2 à 2.5). Ces valeurs s'homogénéisent pour laisser la place, à l'Est, à une section en accumulation générant une avancée importante de la ligne de rivage de l'ordre de +1 à 5 m.an⁻¹ entre 1950 et 1977 à +1 à +10 m.an⁻¹ entre 1977 et 2005.

Le fonctionnement de l'avant dernière cellule (Cellule 7, de la flèche de Beauduc au Grau de la Dent, rappelle celui des deux cellules précédentes avec des variations d'une période à l'autre bien marquées. On assiste en effet au maintien d'une forte accrétion au niveau de la flèche de Beauduc (+15 m.an⁻¹), une accentuation de l'érosion, en aval dérive d'épis et au droit d'une digue frontale, du kilomètre 270 au kilomètre 274 (facteur 2 à 4) après 1977 alors que plus à l'Est les taux d'érosion diminuent dans les casiers d'épis.

Figure I 24: Evolution des variations du rivage en m/an avant (1950-1977) et après (1977-2001/2005) les grandes périodes d'aménagements

La dernière cellule, (cellule 9) entre le Grau de la Dent et l'embouchure du Grand Rhône, largement aménagée dans sa partie Ouest, présente une évolution assez bien individualisée avec globalement une diminution des taux d'érosion après 1977. Seul le
kilomètre 282 montre une accentuation du recul du rivage (-4 m.an⁻¹) en aval dérive d'une batterie d'épis (La Courbe).

Finalement la comparaison de la tendance récente, après les enrochements les plus importants (après 1977), et de la tendance antérieure (avant les enrochements) révèle une forte variabilité du rivage sableux du golfe du Lion. Généralement en Languedoc les ouvrages ont permis, localement, de stabiliser le rivage en amont des ouvrages (Valras, Frontignan, Carnon...) alors qu'en Camargue, mis à part au niveau de la cellule 9, l'érosion s'est accentuée. Les résultats précédents ont mis en évidence en revanche, quel que soit le secteur, la présence d'une érosion importante en aval dérive des batteries d'ouvrages (Valras, Frontignan, Carnon, Les Baronnets, Plage Est des Saintes Maries de la Mer, la Courbe).

Cette dynamique présente sur l'ensemble du linéaire côtier témoigne de la non linéarité de l'évolution du littoral. Partout les valeurs d'érosion ont été multipliées au moins par 2 voire 5 pour certains secteurs. Sur la figure I.24 les valeurs en vert et gris illustrent une inversion de tendance et l'intensité de cette inversion. Deux grands ensembles ressortent de cette étude :

-(1) Le Delta du Rhône avec un fonctionnement bien individualisé. Ici l'implantation des ouvrages a eu pour conséquence une accentuation des valeurs d'érosion, en particulier en aval dérive des ouvrages ; seuls les secteurs du Grau de la Dent et de Piemanson montrent une relative stabilité, s'accompagnant d'une diminution des valeurs de recul. Ce fort recul s'accompagne d'une accentuation des gains sédimentaires sur les flèches de Beauduc et l'Espiguette.

- (2) En languedoc, les valeurs de recul du rivage ont globalement diminué après 1977 ; mais durant cette période on observe une augmentation de la variabilité des vitesses d'évolution. Ponctuellement, notamment en aval dérive des ouvrages, l'érosion s'est accentuée (embouchure de l'Aude, Valras, Ouest du Cap d'Agde, Frontignan, Carnon).

4. Conclusion partielle

L'analyse des bilans sédimentaires, profondeur de fermeture et évolution du rivage, révèle deux secteurs au fonctionnement relativement distinct.

Le littoral du Delta du Rhône est apparu très dynamique confirmant les travaux antérieurs (Suanez, 1997, Bruzzi 1998, Sabatier 2001). L'analyse des variations du rivage et des profils topo-bathymétriques a révélé le caractère parfois très sensible de certains secteurs (Petite Camargue et secteur de Véran) avec une mobilité reportée loin en mer (profondeur de fermeture de respectivement -7 et -10m).

En Languedoc, l'érosion est apparue moins importante que sur le Delta du Rhône, à l'exception de la cellule 2.

La comparaison de l'évolution du rivage avant et après les grandes périodes d'aménagement illustre une augmentation de la variabilité des valeurs de recul sur les secteurs avec des effets locaux particulièrement importants en aval dérive de certains ouvrages (embouchure de l'Aude, Valras, Frontignan, Carnon, Les Baronnets, les Saintes Maries de la Mer...).

Au regard de l'évolution parfois très rapide des différents secteurs il est important de prendre en compte deux éléments.

Il faut d'abord considérer les études précédentes (Sabatier 2001, Suanez 1997...) qui, à partir de l'évolution séculaire du littoral, ont démontré une érosion accentuée depuis le milieu du 20^{ème} siècle. Cette tendance est en relation avec la réduction naturelle des apports sédimentaires à la côte (réduction de la fréquence des fortes crues (Pont et al., 2002) et de l'érosion dans les bassins alpins (Bravard, 1989) aggravée par les aménagements hydro-électriques des bassins versants.

La deuxième donnée est relative à l'agitation générale. Les travaux de Sabatier, Samat et al (accepté, figure I.18), effectués à partir des données du marégraphe du Grau de la Cent (Salins de Giraud) ont en effet révélé que depuis la fin des années 40 on assiste à une augmentation de la fréquence des types de temps favorables aux surcotes générant un accroissement de la fréquence et de l'intensité des surcotes. Le phénomène se traduit lors des tempêtes, par des submersions marines de plus en plus fréquentes, sous entendant une érosion potentiellement plus développée.

Il semble pour le Languedoc que la tendance de la période 1977-2001, prise dans sa globalité soit relativement identique à celle de la période 1950-1977, localement l'accentuation de l'érosion semble directement liée à l'implantation des ouvrages.

Figure I 25: intensité et fréquence des surcotes (Sabatier et al., accepté)

CONCLUSION DE LA PARTIE 1 :

Deux secteurs aux conditions de forçages relativement différentes apparaissent : le Delta du Rhône et le Languedoc. Ce dernier subit l'influence des irrégularités d'écoulement de plusieurs fleuves alors que le delta du Rhône est soumis à l'influence exclusive du Rhône. Les vents potentiellement les plus morphogènes proviennent sur les deux secteurs du Nord Ouest et du Sud Est. Les houles principalement bi directionnelle (Sud Ouest et Sud Est) en Languedoc, se distribuent entre l'Ouest Sud-Ouest et le Sud Est sur le Delta du Rhône. Ce dernier présente également des amplitudes de houle aux diverses périodes de retour plus élevées qu'en Languedoc, où les surcotes marines sont en revanche plus fortes.

Finalement il ressort de cette synthèse des divers systèmes de littoraux sableux du Golfe du Lion, entre Cap Leucate et le Grand Rhône, des différences notables :

-Le secteur Narbonnais, du Cap Leucate à Saint Pierre sur Mer, s'individualise par l'étroitesse des dunes, de larges plages émergées de sable fin au profil en travers comportant une dépression. La plage sous marine en pente faible présente un système de barre linéaire (barre externe) et festonnée (barre interne) et caractère dissipatif bien marqué. La profondeur de fermeture y est relativement haute (-4 à -6m, figure I.21). La comparaison des profils de plage a montré le caractère relativement stable du secteur, (entre 0 et -0.1 m³/m²/an) sur une échelle de temps récente de 4ans (1998-2001) (figure I.19). On assiste sur ce secteur, après 1977, à une diminution des pertes en surfaces (figure I.22) et un ralentissement du recul du rivage (figure I.24), voire, localement une avancée. Il semble être le secteur le moins sensible à l'érosion. En revanche les submersions de la plage émergée peuvent être fréquentes. (Durand 1999).

-Les secteurs De Saint Pierre à Frontignan (cellule 2 et 3), ont des caractéristiques assez proches. La dune est généralement peu développée ou inexistante, et la plage émergée est la plupart du temps relativement étroite sans dépression (<50m). La page immergée montre un système de barre linéaire et festonnée sur la cellule 2, et exclusivement linéraire sur la cellule 3. La profondeur de fermeture est généralement comprise entre -6 et -8m (figure I.21). Le domaine immergé (figure I.19) présente une érosion modeste (autour de -0.1 m³/m²/an) avec localement des pertes importantes de -0.3 m³/m²/an (Valras). L'évolution surfacique de ces secteurs montre un ralentissement de l'érosion depuis 1977 (figure I.22) mais le recul du rivage reste marqué il est compris généralement entre -1 et -2m.an⁻¹, il peut atteindre -5m.an⁻¹ (Valras) (Figure I.24). -Sur le secteur de Frontignan au Grau du Roi (cellule 3) les plages étroites, ont un profil en travers quasiment rectiligne descendant de la haute plage vers la basse plage. La plage immergée montre un système de barre linaire. La profondeur de fermeture (figure I.21) diminue d'Est en Ouest passant de -6m du côté de Frontignan à -2m au fond du Golfe d'Aigues Mortes (Grau du Roi, Port Camargue). La comparaison des profils de plage (figure I.19) à une échelle de temps courte (1998-2001) montre une érosion modeste des fonds (autour de -0.1 m³/m²/an) qui diminue et s'annule progressivement vers l'Est. L'évolution surfacique a montré une diminution générale des pertes en surface (figure I.22) et le recul du rivage est relativement lent (0.5 à 1m/an après 1977, figure I.24).

Les plages du delta du Rhône montrent les plus fortes évolutions en termes de variation des profils de plage ou de mobilité du rivage. Deux grands ensembles s'individualisent.

D'une part les flèches sableuses de l'Espiguette (extrémité de la cellule 5) et de Beauduc (extrémité de la cellule 7) ainsi que le fond du golfe de Beauduc (extrémité de la cellule 5). Ces zones présentent des plages larges (>200m) en pente faible. Le cordon dunaire y est généralement bien développé (3 à 5m) La partie immergée montre une pente faible à l'intérieur du Golfe de Beauduc (<1%) mais plus forte (>1%) au niveau des flèches sableuses. Un système de barre d'avant côte rectiligne est présent. La comparaison des profils de plage sur une échelle de temps courte (2002-2005) montre une accumulation sédimentaire importante au niveau de l'Espiguette (+0.1 à +0.3 m³/m²/an, figure I.19). L'évolution surfacique a montré un important gain sédimentaire sur ces trois zones, et le rivage montre une avancée rapide (figure I.24).

Sur le delta du Rhône, les secteurs des salins d'Aigues Mortes, des Saintes Maries de la Mer et des Salins de Giraud se montrent particulièrement sensibles, les plages y sont très étroites constituées de sable très fin et la profondeur de fermeture se situe autour de -8m (figure I.21). La comparaison des profils de plage a mis en évidence une forte érosion sous marine sur les secteurs du phare de Beauduc et de Petite Camargue (-0.3 à -0.6 m³/m²/an, figure I.19) et une érosion modeste au niveau du Grau de la Dent (figure I.19). L'évolution surfacique a montré une accentuation des pertes depuis 1977 au niveau de la cellule 7 (figure I.22), et sur l'ensemble de ces secteurs le recul du rivage s'est accentué après 1977 (figure I.23 et I 24).

A l'Est du delta, le secteur de Piemanson montre une caractère plutôt stable, les plages sont relativement larges, et la comparaison des profils de plage sur une échelle de temps courte montre une tendance à la stabilité voire à l'accumulation (figure I.19), l'évolution surfacique (figure I.22) et l'évolution de la ligne de rivage témoignent de la même tendance (figure I.24).

Au final le secteur du delta du Rhône se montre particulièrement sensible à la mobilisation sédimentaire, d'autant plus que les conditions de houle y sont fortes.

Le but de ce chapitre était dans un premier temps, de définir le cadre dynamique et la tendance d'évolution morphologique à moyen terme de notre secteur d'étude en se référant aux résultats des travaux antérieurs.

Les données du SMNLR pour le Languedoc Roussillon et celles du CEREGE (acquise pendant ou avant ce travail) dans le Delta du Rhône (profils topo bathymétriques et relevés de la ligne de rivage) ont permis d'identifier les tendances récentes (bilans sédimentaires, évaluation de la profondeur de fermeture et variations de la ligne de rivage) sur différents points de relevés repartis entre le Cap Leucate à l'Ouest, et l'embouchure du Grand Rhône à l'Est.

Les résultats ont permis de définir un cadre d'étude dont la description est essentielle dans le choix des secteurs à étudier. L'évolution locale de la ligne de rivage a permis d'identifier les variations longitudinales des valeurs d'érosions en relation avec la présence d'ouvrages de protection transversaux (L'Est des Saintes Maries de la Mer, Les Baronnets, rivage de la grande Motte...,) L'évolution locale des bilans sédimentaires a permis d'identifier d'importantes modifications en relation avec des ouvrages longitudinaux (Digue de Véran). Enfin l'ensemble de ces résultats a permis d'identifier des secteurs spécifiques comme les Saintes Maries de la Mer, où les dynamiques couplées (longitudinales et transversales) génèrent une érosion importante.

Si l'ensemble de ces données ne constitue pas une avancée fondamentale dans la recherche sur les dynamiques littorales en domaine microtidaux, elles constituent en revanche une base de qualification et de quantification des tendances dynamiques sur les différents secteurs. Cette approche était nécessaire à la compréhension des phénomènes locaux, en relation avec les ouvrages en enrochement, qui seront étudiés dans les parties suivantes.

PARTIE II: IMPACT ET EFFICACITE DES ENROCHEMENTS TRANSVERSAUX

L'impact des ouvrages transversaux sur le littoral et en particulier sur l'évolution de la ligne de rivage est une thématique souvent abordée dans les études, et beaucoup s'accordent à dire qu'ils n'ont pas nécessairement atteint l'objectif escompté. Ces travaux s'appuient généralement sur une description et une observation de l'érosion en aval-dérive. Aujourd'hui, il n'existe cependant pas de méthode simple pour estimer l'ampleur de cette érosion. Nous nous donnons donc comme objectif d'identifier à partir des variations de la ligne de rivage, dans quelle mesure l'implantation d'ouvrages transversaux imperméables modifie l'évolution naturelle du littoral sur une côte ouverte sableuse à barres en domaine micro tidal.

CHAPITRE 1:SYNTHESE BIBLIOGRAPHIQUE ET PROBLEMATIQUE

Nous avons pu rappeler dans la première partie le rôle théorique des ouvrages transversaux : protection et/ou réalignement de la ligne de rivage perpendiculairement au sens de propagation de la houle et/ou canalisation de flux (aménagement des exutoires en mer). L'utilisation de ces ouvrages dans le but d'enrayer le recul du rivage est une pratique ancienne et très largement répandue à travers le monde. Les ouvrages type « épis » sont les plus fréquents et ont été dans un premier temps utilisés avec succès sur les rivières et fleuves, puis face aux problèmes d'érosion côtière posés aux communautés littorales, ils ont été étendus aux plages.

Aussi de nombreux travaux portant sur des observations (Yüksek et al., 1995; Zviely, 2003; Galgano et al., 2004 ; Basco, 2004) et mesures in situ (Ingle, 1966 ; Macdonald et al., 1984 ; Suanez 1997, Durand, 1999, Sabatier 2001, Schoonees et al., 2006), la modélisation numérique (Bakker, 1969 ; Leont'yev et al., 1997, 1999, Ouillon, 1997) ou physique (Badei et al., 1994 ; Dette et al., 2004 ; Trampenau et al., 2004) ou encore les modèles conceptuels (Dean, 1993) ont permis d'apporter de nombreux éléments concernant l'interaction dynamique entre ce type d'ouvrage et la plage adjacente. Nous proposons une synthèse bibliographique afin de positionner notre recherche dans un contexte plus large que celui du site d'étude.

Le champ d'investigation des études portant sur cette thématique est vaste. Certaines ont insisté sur les effets transversaux des épis : accentuation des courants de retour (Short 1991, Bauer et al Short 1992, Sabatier 2001), accentuation des vitesses de transit au-delà des musoirs des ouvrages (Short 1991), d'autres sur la circulation interne aux casiers (circulation en cellules, Trampenau et al 2004) et sur les effets en aval dérive (Mc Dougal et al., 1987 ; Walton et Sensabaugh, 1978 ; Bruun 1995, 2001 ; Suanez 1997 ; Durand 1999 ; Sabatier 2001).

Certains travaux ont, quant à eux, insisté sur l'aspect ingénierie et notamment, la prise en compte de la conception même des ouvrages : emprise spatiale sur le milieu (Meadows et al 1998; Granja et al ; 1995), relation entre calibration (espacement / longueur) et efficacité des épis (Macdonald et Patterson 1984, McDougal et al 1987, Yüksek et al 1995, Sabatier 2001, Galgano et al 2004) ou encore coefficient de perméabilité des structures (Kolp 1970; Trampenau et al ; 2004; Dette et al.; 2004).

Propriété	Commentaire		
1-Forte influence de l'angle d'incidence et de la hauteur des	Accepté: la houle va déterminer l'intensité du transport		
houles (sur le transport longshore autour des ouvrages)	longitudinal		
2. Importanza de la longuour de l'ouvrage	Accepté: la longueur de l'ouvrage va dépendre de l'étendue		
2- Importance de la longueur de l'ouvrage	de la zone du déferlement		
	Accepté: le ratio de l'espacement à la longueur des épis		
3-Importance du rapport espacement / longueur des ouvrages	varie en pratique de 1 à 4. Il dépend du marnage, du régime		
(batterie d'épis)	des houles, de l'angle d'incidence des houles, du profil de		
	plage et des caractéristiques des sédiments		
	Accepté: les épis perméables génèrent un fonctionnement		
4-Meilleur rendement des épis perméables	dynamique moins turbulent et réduisent la formation de		
	cellules à l'intérieur des casiers		
5-Meilleur fonctionnement des épis dans des environnements	Accepté: Les épis agissent comme un piège pour les		
à forte dynamique longitudinale	sédiments transitant longitudinalement		
6-Nécessité de coupler épis et rechargement notamment en	Accepté: l'apport artificiel de sable permet d'éviter l'érosion		
aval dérive	en aval dérive par déficit sédimentaire		
7-Nécessité de la réduction progressive de la longueur des	Accepté: permet de réduire la formation de cellules en		
derniers ouvrages d'une batterie d'énis	arrière des derniers épis et réduit donc les turbulences et		
derniers ouvrages à une outerie à épis	l'érosion		
8-Construction doit débuter en aval dérive pour remonter en	Accepté: en tenant compte du balancement possible de la		
amont	direction du transport sédimentaire (saisonnier)		
9-Epis créent une accumulation en amont dérive et une érosion	Accepté: les épis fonctionnent comme un piège à sédiment		
en aval	en amont, générant une arrivée moindre de sable en aval.		
10-L'implantation d'épis accentue l'érosion des fonds en mer	Non validé, aucune étude n'a permis de le démontrer de		
au-delà des ouvrages	façon catégorique		
11-l'implantation d'épis favorise les courants de retour	Accepté : les épis fonctionnent comme un « canalisateur »		
transportant le sable plus loin en mer (érosion)	des courants de retour.		
12-Pour des secteurs avec une prédominance d'une direction	En partie accepté: réduction possible des courants de		
de propagation de houle les épis doivent être perpendiculaires	retour.		
aux crêtes des vagues déferlantes			

 Tableau II 1: Propriété fonctionnelle attribuée aux épis et leur évaluation critique accepté ou non par la littérature scientifique (d'après Kraus et al., 1994)

L'utilisation des épis pour stabiliser le rivage a, en effet, été sujette à de nombreuses controverses. Un certains nombre d'études ont démontré que l'implantation de ce type d'ouvrage avait conduit à une accentuation de l'érosion en particulier en aval dérive (Leatherman, 1991; Short 1992; Durand 1999), alors que d'autres, au contraire, ont démontré que, bien construits et adaptés ils étaient tout à fait capable de remplir leur rôle de

stabilisation du rivage (Meadows et al., 2000; Trampenau et al., 2004). Après Balsillie (1972), Krauss et al (1994) a proposé une analyse critique de l'ensemble des résultats obtenus sur la question en proposant une synthèse des effets acceptés ou encore questionnés de ce type d'ouvrage. Ces données sont recensées dans le tableau II.1. Il ressort notamment de cette analyse que si l'érosion en aval dérive de batterie d'épis est généralement observée, peu de résultats ont en revanche été apportés à l'étude des caractéristiques et de l'intensité même de cette érosion.

Plus récemment les travaux de Trampenau et al. (2004), en comparant, en modèle physique, des structures de perméabilité différentes, soumises à des conditions de courant uniformes ou irrégulières, ont permis de compléter une partie des connaissances sur les effets négatifs des ouvrages transversaux les plus imperméables. Trampenau et al (2004) confirment sur ces structures une accentuation des vitesses de courant et des phénomènes d'affouillement au niveau des musoirs des épis, une circulation cellulaire et non linéaire des flux à l'intérieur même des casiers, favorisant le développement des courants de retour le long des épis ainsi qu'une érosion accentuée en aval dérive (*lee-erosion*).

Plus globalement ces auteurs ont opposé un fonctionnement dynamique beaucoup plus homogène et moins contraignant des ouvrages perméables, au fonctionnement « turbulent » et néfaste des ouvrages imperméables (figure II.1). Dans le Golfe du Lion, les travaux de Paskoff (1998) et Durand (1999) en Languedoc Roussillon ont démontré l'accentuation de l'érosion en aval dérive d'ouvrages transversaux. A ce phénomène s'associe souvent la construction de nouveaux ouvrages, reportant l'érosion plus loin en aval dérive (effet domino Paskoff, 1998). Durand (1999) a, par contre, mis en évidence que si dans les premières années d'implantation les épis remplissent leur rôle de protection et de maintien de la ligne de rivage, à plus long terme l'érosion se réactive à l'intérieur des casiers.

Figure II 1: courants et variations du rivages induits par des épis imperméables (a) et perméables (b). Schématisation en coupe (c) du courant longshore et des profils de plage avec et sans épis (perméables) (Trampenau et al., 2004)

En Camargue, sur le site de Véran, Suanez (1997) observe un ralentissement du recul du rivage après la construction d'épis. Sabatier (2001), quant à lui, a pu définir une période d'efficacité des épis variable entre 2 et 10 ans en Petite Camargue, il a relié ce dysfonctionnement à l'espacement des ouvrages. De plus il a pu mettre en évidence la présence de courants de retour le long des épis confirmant les effets néfastes potentiels de tels ouvrages.

L'ensemble de ces synthèses insiste essentiellement sur les effets généraux autour des ouvrages et à l'intérieur des casiers intra-épis, mais peu de travaux en revanche ont insisté sur quantification des phénomènes érosifs en aval dérive et leur évolution dans le temps. Sur cette thématique de l'érosion en aval dérive, seuls quelques auteurs,(Walton et Sensabaugh ,1978; Mc Dougal et al., 1987; Basco, 2003) sur les digues longitudinales et Brunn (1995, 2001), Leont'yev (1999) sur les épis se sont penchés sur la question. De plus les modèles one-line de type GENESIS, largement utilisés en ingénierie côtière, afin de simuler les variations du rivage autour des ouvrages, simulent une érosion en aval dérive, qui finit par trouver une position d'équilibre et n'évolue plus dans le temps. En termes d'aménagement il est donc important de savoir si on assiste à une stabilisation ou non de l'érosion en aval dérive dans le temps. De plus il serait utile de définir des paramètres simples à prendre en compte dans son évaluation pour prédire l'évolution future des secteurs équipés d'ouvrages transversaux.

L'objectif de cette partie est donc bien, d'identifier à partir des variations de la ligne de rivage, dans quelle mesure l'implantation d'ouvrages transversaux imperméables modifie l'évolution naturelle du littoral sur une côte ouverte sableuse à barres en domaine micro tidal.

Nous présenterons tout d'abord les 7 sites étudiés. Ils correspondent à des situations géographiques et dynamiques relativement différentes, ce qui devrait nous permettre de conduire une étude reproductible à d'autres secteurs. Nous décrirons ensuite la méthodologie utilisée, appuyée sur la comparaison de l'évolution chronologique de la ligne de rivage. L'utilisation de cette méthode permettra de proposer un bilan (avancée/recul et surfaces) de l'éfficacité des ouvrages sur le recul du rivage à l'intérieur des casiers d'épis et en aval dérive. Une analyse empirique des relations entre dérive littorale, caractéristiques des ouvrages et érosion en aval dérive sera enfin conduite dans le but de proposer des indices facilement utilisables en ingénierie afin de prévoir l'érosion aval dérive. Ces résultats seront ensuite discutés afin d'évaluer leur pertinence et leur utilisation possible en aménagement.

CHAPITRE 2: PRESENTATION DES SITES

L'étude a intégré des sites aux caractéristiques dynamiques différentes et présentant des niveaux d'aménagement divers. Nous avons sélectionné sept secteurs différents (figure II.2): embouchure de l'Aude (1), plage de Frontignan (2), Carnon (3) secteur des Baronnets (4), site de la Fourcade (5), site de Véran (6) et de la Courbe (7). Les plages montrent, pour la plupart, une côte à barre de type « Dissipative and Longshore-Bar-Trough » selon Wright and Short (1984). Seul le secteur de l'embouchure de l'Aude (1) présente une côte à barre crescentique (cf partie I).

Figure II 2: localisation des sites

1. Embouchure de l'Aude : Grau de Vendres.

Le site du Grau de Vendres se localise à la limite départementale entre l'Hérault à l'Est et l'Aude à l'Ouest, et communale de Fleury à l'Ouest et de Vendres à l'Est. Ici l'aménagement transversal prend la forme d'un grau aménagé au niveau de l'exutoire de l'Aude (figure II.3). Sa construction sous sa forme actuelle (200 m pour la jetée Est et 90 m pour la jetée Ouest) date de 1989, mais une première jetée relativement modeste avait déjà été édifiée en 1968. Le transport sédimentaire dominant, compris entre 10 000 et 40 000 m³ par an, est dirigé vers le Sud Ouest (LCHF, 1984 et 1997, SOGREAH, 1995, Durand 1999).

2. Frontignan

Le secteur de Frontignan sur le département de l'Hérault s'illustre par une forte densité d'ouvrages de protection côtière, avec un peu plus de 4000m équipés d'épis espacés 100m à partir du Port. La première campagne d'aménagement se situe à la fin des années 40 (figure II.3). Par la suite plusieurs tranches d'implantation d'ouvrages se sont succédées en 1970, 1976, 1977, 1978 pour la première section (sur 3km, du port à l'Ouest au Mas des deux Rives à l'Est), puis 1985 (sur 650m) pour la deuxième section, contribuant à augmenter leur emprise spatiale vers l'Est. Leur extension transversale est comprise entre 70 et 90m, de la berme au musoir. Le transport sédimentaire dominant, estimé entre 10 000 et 40 000 m³ par an quant à lui est dirigé vers l'Est (SOGREAH, 1984 ; Etude L.R, 1993 ; E.I.D, SMNLR, 2005).

3. Carnon

Les premiers ouvrages de protection datent ici de la fin des années 60. La construction du port a permis un apport de sable de $10000m^3$ sur le secteur directement à l'Est entre les brises lames de le figure II.3. Par la suite différentes campagnes d'aménagement ont eu lieu (1971, 1981, 1983) étendant de presque 1.5km le linéaire côtier « artificialisé ». Plusieurs phases de travaux de protection peuvent être identifiées durant lesquelles ont été mis en place :

-1 éperon de 50 m accroché à la digue Est (1969),

-5 brise-lames d'une longueur allant de 50 à 150 m (1969),

-14 épis de 100 m long, espacés entre eux de 100 à 150 m (1971, 1981 et 1983).

Le transport sédimentaire dominant, estimé à environ 10 000 à 20 000m³ par an, est dirigé vers l'Est (SOGREAH, 1984 ; Etude L.R, 1993 ; E.I.D, SMNLR, 2005).

Figure II 3: date de création des ouvrages de protection sur les différents sites. La flèche désigne le sens du transport sédimentaire dominant.

4. Les Baronnets

Le secteur des Baronnets se localise en Petit Camargue, à l'Est de la flèche de l'Espiguette. Ce secteur s'insère à l'Ouest d'une section à forte densité d'ouvrage s'étendant sur 18km depuis le Petit Rhône. Au total 115 épis y ont été implantés, mais nous ne présentons ici que 5.5 km d'ouvrages édifiés sur la partie Ouest de la Camargue (figure II.3). Les premiers datent de 1975 au niveau du Rhône Vif. Les campagnes d'enrochement s'échelonnent ensuite, pour répondre au recul continu en aval dérive des ouvrages, jusqu'en 1997. Le transport sédimentaire dominant, compris entre 300 000 et 700 000 m³ par an, est dirigé vers l'Ouest (Sabatier 2001).

5. Plage de La Fourcade, (Est des Saintes Maries de la Mer)

Le secteur des Saintes Maries de la Mer est un peu particulier puisqu'il présente une succession d'ouvrages de type différents : aménagement portuaire et de protection (épis, épis en T, digue). Les premiers ouvrages datent de 1940 (figure II.3) mais ils se développent essentiellement à partir des années 1970 et s'échelonnent jusqu'en 2003 à l'Ouest de la ville. Nous y reviendrons dans la partie IV. Le transit sédimentaire vers l'Est a été estimé sur le secteur entre 75 000 et 360 000 m³ par an (Sabatier 2001).

6. Véran, Salins de Giraud

Ce secteur est un des deux sites qui ont présenté une construction des épis s'effectuant, globalement, dans le sens inverse du courant dominant, comme préconisé dans « *les recommandations pour la conception et la réalisation des aménagements de défense du Littoral contre l'action de la mer* » éditées par le Centre d'Etude Technique Maritimes et Fluviales (Avril 1998). La construction des épis a débuté en 1988 et s'est échelonnée jusqu'en 1990 (figure II.3). Ils ont été complétés d'un brise lame en 1992 et d'une digue frontale reconstruite en 1998 après la tempête de 1997. Le transport sédimentaire dominant estimé entre 50 000 et 530 000m³ par an est dirigé vers l'Ouest (Sabatier 2001).

7. La Courbe, Salins de Giraud

On est ici dans le cas d'une construction d'une digue frontale, en 1970, à laquelle a été rajoutée une série d'épis, respectivement en 1991, 1993, 1994. Ici comme sur le site de Véran les épis ont été implantés successivement dans le sens inverse du courant dominant (figure II.3). Le

transport sédimentaire dominant est orienté vers l'Est et estimé entre 12 000 et 230 000 m³ par an (Sabatier 2001).

Finalement ces sites nous proposent un panel assez large de situations dans lesquelles une érosion en aval dérive est toujours présente: d'un grau aménagé, 4 cas de batterie d'épis (Frontignan, Carnon, Baronnets), 1 cas d'ouvrages multiples (Saintes Maries de la Mer), 2 cas couplant digue et épis (Véran et la Courbe)

CHAPITRE 3: METHODES

L'étude de l'impact des épis se base sur une analyse des variations du rivage sous SIG. Nous présentons donc dans un premier temps les méthodes utilisées pour l'intégration dans un SIG des relevés du rivage, puis les traitements appliqués à ces informations.

1. Les variations du rivage

1.1 Collecte des données

Pour mener à bien cette étude, différents types de données relatives à la mesure de la ligne de rivage ont été utilisées (tableau II.2).

Les données les plus anciennes, sur le Delta du Rhône, sont issues des cartes de l'EPSHOM (Etablissement Principal du Service Hydrographique de la Marine) en 1872 et 1895. La période de 1944 à 2005, en Languedoc Roussillon et sur le Delta du Rhône, a été couverte majoritairement par des données issues de photographies aériennes réalisées par l'IGN. Ces clichés parfois déjà géoréférencés (orthophoto) ou, le plus souvent, sous forme de clichés à orthorectifier ont constitué une base de données essentielle à ce travail. D'autres données de position de rivage ont été acquises sur le terrain au DGPS.

La majorité des données est donc issue des travaux antérieurs. Les données sur le Delta du Rhône proviennent des travaux de Suanez (1997), Sabatier (2001) sur les cartes d'l'EPSHOM (1872 et 1895) et sur les photographies aériennes de 1940, 1950, 1960 et 1995. En Languedoc elles sont issues de différents organismes (IGN, SMNLR, IFN...). Sur le site de Frontignan les photographies aériennes recalées sont issues des travaux du bureau d'étude « éole ».

Cependant un certain nombre de données ont été également acquises dans le cadre de cette thèse. Deux relevés de la ligne de rivage au DGPS (du Grand Rhône à Port Camargue en 2004 et du Grand Rhône au Grau du Roi en 2005), et 27 clichés aériens ont été recalés (Tableau II.2 et II.3) afin d'augmenter le nombre des mesures nécessaires à l'identification des variations de la ligne de rivage. Les dates signalées en grisé (photo aériennes ou relevé DGPS) dans le tableau II.2, représentent les données acquises directement dans le cadre de cette étude,

1872							
				C.epshom	C.epshom	C.epshom	C.epshom
1895				C.epshom	C.epshom	C.epshom	C.epshom
1940				P.ign	P.ign	P.ign	P.ign
1946 T.	.smnlr	P.ign	P.ign				
1950				P.ign	P.ign	P.ign	P.ign
1960				P.ign	P.ign	P.ign	P.ign
1965	P.ign	P.ign	P.ign				
		, in the second s					
1970	⊃.ign	P.ign					
1971							
1972							
1973							
1974							
1975							
1976 T	.smnlr						
1977	P.ifn	P.ifn	P.ifn	P.ifn	P.ifn	P.ifn	P.ifn
1978							
1979							
1980		P.ign					
1981							
1982		P.ign					
1983							
1984 T	.smnlr	P.ign	T.smnlr				
1985							
1986		P.ign					
1987				T.smnlr			
1988							
1989	^D .ign	P.ign	P.ign	T.smnlr	C.ign	C.ign	C.ign
1990			P.ign				
1991							
1992	⊃.ign	P.ign					
1993				T.smnlr			
1994		P.ign					
1995	⊃.ign			T.smnlr	P.ign	P.ign	P.ign
1996		P.ign					
1997			T.smnlr	T.smnlr			
1998				0	0	0	0
1999							
2000 D	.smnlr	D.smnlr	D.smnlr	D.cerege	D.cerege	D.cerege	D.cerege
2001	0	0	0	0			
2002				D.cerege	D.cerege	D.cerege	D.cerege
2003				0	0	0	0
2004				D.cerege	D.cerege	D.cerege	D.cerege
2005	^D .ign	P.ign	P.ign	D.cerege	D.cerege	D.cerege	D.cerege

Type de données

Origine des données

Période de mise en place

P: photographies aériennes O: orthophoto T:relevés au théodolithe D:relevés au DGPS C:cartes

IGN IFN CEREGE SMNLR

EPSHOM

des principaux ouvrages

En grisé: les données acquises et corrigées dans le cadre de ce travail

Tableau II 2: récapitulatif des sources et dates traitées

VENDRES			
Date	Missions	échelle	N° de cliché
1946			
1965	CDP 9136	1:20 000	3359
1970	CDP 6455	1:8 000	1235
	CDP 6455	1:8 000	1236
	CDP 6455	1:8 000	1237
1976	FR 2810 P	1:20 000	1961
1977			
1984			
1989	EID	1:15 000	
1992	FD11	1:25 000	190
1995	F2545	1:30 000	58
2000			
2001			
2005	FD34	pixel 68cm	2842
FRONTIGNAN			
Date	Missions	échelle	n°de cliché
1946			
1962			
1970			
1977			
1980			
1982	F 2477	1:30 000	1
1986			
1989	EID	1:15 000	
1992			
1994	F 2743-2744	1:30 000	46
	F 2743-2744	1:30 000	76
1996	FD 34	1:25 000	403
	FD 34	1:25 000	405
	FD 34	1:25 000	669
2000			
2001			
2005	FD 34	pixel 68cm	1611
	FD 34	pixel 68cm	1610
CARNON			
Date	Missions	échelle	n°de cliché
1946	F 2844-2842	1:25 000	2
	F 2844-2842	1:25 000	309
1965	CDP 9017	1:15 000	194
	CDP 9017	1:15 000	195
1977			
1984			
1989	EID	1:15 000	
1990	F 2843	1:30 000	8
1997			
2000			
2001			
2005	FD34	pixel 68cm	3314
	FD35	nivel 68cm	3494

Tableau II 3: Récapitulatif des photographies recalées dans le cadre de ce travail

Ces données présentent parfois des écarts diachroniques notables entre les différents sites d'étude mais elles autorisent néanmoins une couverture suffisante de l'évolution du littoral avant et après les ouvrages.

1.2 Traitement des photographies aériennes

Les photographies aériennes traitées dans cette étude ont subi une correction par « orthorectification ». En effet, les photographies aériennes sont des prises de vue instantanées qui génèrent une perspective conique dont le sommet du cône est la chambre de prise de vues photographiques embarquée. Lorsqu'une image est acquise par photographie aérienne, elle contient des erreurs géométriques. Pour placer une image dans une projection cartographique, afin d'intégrer le résultat dans un SIG, ces erreurs doivent être corrigées. La correction géométrique consiste à modifier l'arrangement spatial des objets et leurs relations géométriques sans changement substantiel du contenu des données. La géométrie des images aériennes est fonction, des paramètres de vol de l'avion au moment de la prise de vue : mobilité sur les trois axes (roulis, tangage, lacet) et altitude. Cette géométrie est également dépendante de la focale de l'appareil photographique.

La correction géométrique peut être :

-Numériquement exacte : ce sont les méthodes paramétriques qui modélisent rigoureusement les conditions de prise de vue en intégrant les paramètres d'acquisition, les équations de projections....

-Approximative : ce sont les méthodes polynomiales qui utilisent des <u>points d'appuis</u> ou d'amer, pour estimer un polynôme de déformation. Cette méthode est plus simple mais moins précise car elle néglige le processus d'acquisition des images.

En pratique se sont le plus souvent des méthodes hybrides qui sont retenues. En fonction du niveau de correction à apporter à l'image distordue on parle de <u>recalage</u>, de rectification (projection d'une image dans un repère cartographique donné sans tenir compte des effets topographique) ou d'ortho-rectification (projection d'une image dans un repère géodésique donné en tenant compte de la topographie).

Généralement, pour les photos aériennes, peu d'informations sur les positions de l'avion sont données, c'est pourquoi il est généralement nécessaire de prendre des points d'appui ou points de contrôle pour calculer le modèle aérien.

1.2.1 L'image de référence

Une fois la photo aérienne sélectionnée, il faut se baser sur une image de référence. Dans notre cas nous nous sommes appuyés sur les mosaïques de photographies aériennes orthophotographiées de l'IGN (1998 pour PACA, et 2001 pour l'Hérault et le Gard). Le but est alors de caler les photos recueillies sur l'orthophoto correspondante. Le système de projection de cette dernière étant en NTF Lambert 2 étendu, les photographies rectifiées seront donc calées dans ce système.

1.2.2 Détermination de la méthode d'orthorectification

Les points de contrôle

Pour calculer la déformation à partir de points de contrôle, chacun d'eux est repéré par ses coordonnées (X,Y) dans le repère de référence et par ses coordonnées (U,V) dans le repère distordu (de l'image à recaler). Ces points homologues entre l'image à rectifier et la référence cartographique permettent de calculer un modèle de déformation de l'image, par exemple de type polynomial. C'est ce type de modèle qui sera considéré et développé dans la suite du paragraphe. Corriger géométriquement une image consiste toujours à déterminer une relation mathématique (modèle de déformation) entre les coordonnées dans l'image brute et les coordonnées dans le système de référence. A partir d'une série de points, dont les coordonnées géographiques ou cartographiques (Xi, Yi) et les coordonnées (pi,qi) dans l'image à rectifier sont connues, les polynomes L et P peuvent être calculés par la résolution du système linéaire suivant :

Pi=L(Xi,Yi)

Qi=P(Xi, Yi)

où les paramètres à déterminer sont les coefficients des polynômes.

Selon la complexité des déformations de l'image, le degré du polynôme à utiliser sera différent : plus les déformations sont importantes (grand angle de prise de vue, relief accidenté,...) plus le polynôme doit être précis c'est-à-dire avoir un degré élevé. Il est donc nécessaire de choisir le degré du polynôme avec attention. En effet, l'utilisation de polynômes de degré élevé (supérieur à 3) peut s'avérer dangereuse quant aux déformations non contrôlées des zones dépourvues de points d'appui ou avec des points d'appui peu représentatifs de la complexité du relief.

L'ordre du polynôme :

Pour rectifier la photographie, le logiciel (ARC GIS) calcule un polynôme de passage à partir de points d'amers. Ce dernier est un point identique sur l'image à rectifier et l'image de référence, par exemple le coin d'une maison, le croisement de chemins...

En principe, plus le degré du polynôme et le nombre de points d'amer sont élevés, plus la correction est précise. Nous avons choisi ici un polynôme d'ordre trois (le plus élevé). Mais l'utilisation d'un polynôme d'ordre élevé introduit des distorsions si le nombre de points d'appuis n'est pas suffisant. Le nombre minimal de points d'amer peut être calculé de la façon suivante :

$$N = ((T+1) (T+2)) / 2$$

N : le nombre minimal de points d'amer nécessaire

T : l'ordre de la transformation choisie.

Par exemple avec un polynôme du troisième degré : N = ((3+1)(3+2))/2 = 10 points d'amer au minimum. Nous tenterons d'en sélectionner entre 30 et 50.

Rectification des images

Cette rectification consiste en une déformation (définie par le modèle calculé préalablement) à faire subir à l'image, pour obtenir une image corrigée dans le référentiel choisi. Le modèle utilisé est celui qui donne à partir des coordonnées (X,Y) d'un référentiel choisi, la position (p,q) de l'image à rectifier.

La précision géométrique de l'image est fonction de la qualité des points d'appui, de la fiabilité des cartes utilisées comme référence et /ou des mesures terrain et du relief de la zone étudiée

Qualité des points d'appui

La qualité des points d'appui est fonction de la qualité des documents utilisés et de leur échelle. La qualité d'une carte topographique dépend de la précision des relevés ayant permis l'élaboration de la carte, et de la qualité de la reprographie. Lorsque le document cartographique est de bonne qualité la précision espérée est récapitulée dans le tableau suivant (Tableau II.3).

Echelle	Précision (m)
1:10000	2.5 à 5
1:25000	6 à 12.5
1:50000	12.5 à 25
1:100000	25 à 50

Tableau II 4: évaluation de la précision de référence

Influence du relief (figure II.4)

Les influences conjointes du relief et de l'angle de prise de vue induisent dans les images, des modifications de l'échelle due aux effets de pente, et des effets de parallaxe ou délocalisation des objets (figure suivante)

Figure II 4: effet de relief sur le rendu de la photo aérienne

Il est vrai que pour nos secteurs littoraux les reliefs sont très peu prononcés, en revanche le choix des points de contrôle s'est fait souvent sur des bâtiments. Aussi, dans la mesure du possible, les repères ont été pris à leur base et non au sommet afin de limiter les erreurs causées par l'influence du relief.

Calcul de l'image corrigée

Pour effectuer une correction géométrique de l'image originale, on applique un procédé appelé rééchantillonnage, afin de déterminer la valeur numérique à placer dans la nouvelle localisation du pixel de l'image de sortie corrigée. Le processus de rééchantillonnage calcule la nouvelle valeur du pixel à partir de sa valeur originale dans l'image non corrigée. Les trois méthodes principales de ré échantillonnage qui permettent de corriger une image sont les suivantes.

La méthode du plus proche voisin utilise la valeur numérique du pixel de l'image originale qui se trouve le plus près de la localisation du nouveau pixel dans l'image corrigée. C'est la méthode la plus simple et elle n'altère pas la valeur originale, mais elle peut produire une duplication des pixels ou une perte de certaines valeurs. Cette méthode a aussi tendance à produire des images bruitées. Lorsque l'on rééchantillonne une image couleur (type carte géologique) il faut impérativement choisir une interpolation au plus proche voisin sous peine de créer de nouvelles couleurs sur l'image.

L'interpolation bilinéaire prend une moyenne pondérée par la distance des quatre pixels de l'image originale les plus près du nouveau pixel. Le procédé de moyenne altère la valeur originale des pixels et crée une valeur complètement nouvelle sur l'image finale.

Le processus de convolution cubique va encore plus loin et calcule la moyenne pondérée par la distance sur un bloc de seize pixels à partir de l'image originale entourant la localisation du nouveau pixel de sortie. Comme pour l'interpolation bilinéaire, cette méthode calcule de nouvelles valeurs de pixels. Cependant, ces deux méthodes produisent des images à l'apparence plus douce, contrairement à la méthode du plus proche voisin.

Ici, la méthode choisie est la convolution cubique pour obtenir une netteté des images la plus précise.

Figure II 5: méthodes de ré échantillonnage

1.2.3 Marges d'erreurs retenues.

VENDRES					
Date	echelle	points d'amer	Resolution (m)	Rms	marge d'erreur (m)
1946					
1965	1:20 000	51	0.742	1.05	0.8
1970	1: 8 000	31	0.662	1	0.7
	1:8 000	35	0.662	0.92	0.6
	1:8 000	34	0.662	0.94	0.6
1976	1:20 000	35	0.532	0.82	0.4
1977			01002	0.01	011
1984					
1989	1.15 000	38	0 480	0 74	0.4
1992	1.25 000	33	0 432	0.73	0.3
1995	1:30 000	35	0.385	0.8	0.3
2000	1.00 000	00	0.000	0.0	0.0
2000					
2001	nivel 68cm	25	0.68	0.69	0.5
EPONTICNAN	pixel oociii		0.00	0.00	0.5
FROMTIGNAN					
Date	échelle	points d'amer	Résolution (m)	Rms	marge d'erreur (m)
10/6					
1940					
1962					
1970					
1977					
1980	4 00 000		0.750	0.74	
1982	1:30 000	38	0.753	0.74	0.6
1986	4.45.000		0.400	0.70	
1989	1:15 000	41	0.480	0.73	0.4
1000		38	0.480	0.85	0.4
1992		10			
1994	1:30 000	40	0.462	0.87	0.4
	1:30 000	35	0.462	0.75	0.3
1996	1:25 000	37	0.574	0.83	0.5
	1:25 000	35	0.574	0.71	0.4
	1:25 000	38	0.574	0.79	0.5
2000					
2001					
2005	pixel 68cm	35	0.68	0.71	0.5
	pixel 68cm	37	0.68	0.75	0.5
CARNON					
Date	échelle	points d'amer	Résolution (m)	Rms	marge d'erreur (m)
1946	1.25 000	38	0.932	1 1 2	10
1040	1.25 000	39	0.932	1.09	1.0
1965	1:15 000	37	0.552	0.92	0.6
1505	1:15 000	51	0.654	0.52	0.0
1077	1.15 000		0.004		
1001					
1904	1.15 000	11	0.490	0.77	0.4
1909	1.15 000	41	0.400	0.77	0.4
1000	1.20.000	24	0.500	0.65	0.2
1990	1.30 000	34	0.323	0.00	0.3
1997					
2000					
2001	minuel 00 a s	25	0.00	0.00	0.4
2005	pixei 68cm	35	0.68	0.62	0.4
	pixel 68cm	37	0.68	0.65	0.4

Tableau II 5: Incertitude liée à la correction géométrique des photos

La prise en compte de données différentes impose de définir une marge d'erreur pour chaque méthode de relevé. Pour les données de l'EPSHOM (fin 19ème), les marges d'erreur sont estimées par les hydrographes à +/- 10m, pour celles réalisées au DGPS, une marge d'erreur de +/-3m en x et y est retenue (estimation constructeur).

Les marges d'erreur associées aux données issues des photographies, dépendent de la qualité et de l'échelle de la photo, ainsi que la résolution du scannage. Ces valeurs sont calculées par le programme de correction. Elle correspond à une mesure d'écart liée au modèle (polynôme) au niveau des points d'appuis entre l'image corrigée et la base de référencement utilisée (orthophotographie IGN). Elle est exprimée par la valeur de l'erreur moyenne quadratique en pixel, calculée entre les coordonnées de chaque point d'appuis et moyennée sur l'ensemble des points d'appuis de la même image, puis multipliée par la résolution afin d'obtenir l'incertitude liée à la correction géométrique en mètre (tableau II.5). nous retiendrons une incertitude liée à la correction des photos comprise entre 0.3 et 1m. Les données orthophotographie IGN afficheraient, quant à elles, une erreur de 0.5m (estimation IGN)

2. Définition des périodes au fonctionnement naturel et influencé par les ouvrages.

L'ensemble des données relatives à la position du rivage servira de base pour la comparaison des vitesses d'évolution du trait de côte avant et après l'implantation des ouvrages de protection côtière, afin d'estimer leur influence sur les plages environnantes.

Nous avons pu voir dans les paragraphes précédents que sur la plupart des sites, un échelonnement dans le temps de l'implantation des ouvrages a été effectué. Ce phasage a eu comme conséquence d'étendre longitudinalement, et vers l'aval dérive, l'emprise des ouvrages sur les plages. Il est donc essentiel d'identifier quelles sont les périodes de fonctionnement naturel et les périodes d'influence des ouvrages. Ces éléments permettront de définir en fonction des dates de relevé de rivages dont nous disposons et des périodes d'implantation des ouvrages, les grandes phases de fonctionnement des 7 secteurs, selon le degré d'aménagement. Or les aménagements parfois tardifs comme pour les Baronnets (dernier ouvrage 1997) limitent le nombre de relevés effectués en aval dérive des derniers ouvrages. Prenons l'exemple de la figure II.6, dont le premier relevé de rivage date de 1872 et pour laquelle les ouvrages ont été implanté en 1977, (jusqu'à une distance de 1000m par rapport au début du secteur), en 1989

(jusqu'à une distance de 4000m) et en 1998 (jusqu'à une distance de 5500m). La période de fonctionnement naturel sera définie entre 1872 et 1977, soit 105ans, pour un fonctionnement artificiel entre 12 et 6 ans (figure II.6).

Figure II 6: identification de l'influence des ouvrages en fonction des campagnes d'enrochement, exemple des Baronnets.

Ce constat a été appliqué à l'ensemble des sites présentant une succession d'ouvrages construits à des périodes différentes, et pour lesquels nous disposions de relevés de rivage permettant d'encadrer ces campagnes d'aménagement.

3. Etude des variations des surfaces

Après avoir défini les méthodes d'analyse des variations linéaires du rivage nous aborderons également l'évaluation des changements en termes de surfaces. Nous identifierons d'abord l'évolution en surface avant les ouvrages afin de définir une tendance « naturelle » et une évolution après leur implantation, afin d'identifier une éventuelle influence de ces ouvrages. L'intérêt est ici d'identifier si la surface de sable éventuellement stockée en amont des épis, est équivalente à la surface érodée en aval dérive. Nous définirons à partir de ce principe un bilan sédimentaire en surface de chaque secteur. Nous avons considéré pour chaque site une section en amont et en aval dérive des épis (périodes aménagée) ou des futurs épis (périodes naturelles).

Figure II 7: Identification des intervalles de temps et surfaces de calcul prises en compte, en fonction des périodes d'aménagement, pour l'évaluation des bilans sédimentaires surfaciques

D'autre part plusieurs sites, nous l'avons vu, présentent un échelonnement temporel de l'implantation des épis. Les périodes dites naturelles et influencées sont identifiées selon les considérations décrites dans le précédent paragraphe. Mais nous rajoutons ici une donnée spatiale, en considérant nos secteurs comme des unités homogènes (figure II.7): nous avons ainsi considéré comme origine (X.0) soit le début d'une cellule littorale, pour les secteurs de Frontignan, Les Baronnets (Petit Rhône) La Fourcade (Petit Rhône), Véran (Grau de la Dent), et La Courbe (Grau de la Dent), soit une digue portuaire pour le secteur de Carnon, soit un point d'inflexion/ de stabilité pour le Grau de Vendres. Cette méthode permet de prendre en compte l'ensemble de la batterie d'épis. De la même façon nous avons considéré comme limite de fin de calcul de surface (X.1, X.2...) les points d'inflexion/de stabilité de la ligne de rivage relative à chaque date. Cette donnée nouvelle est à la fois appliquée au fonctionnement naturel et au fonctionnement influencé.

Le principe ici est de définir, en tenant compte de l'évolution naturelle de chaque site, si les ouvrages ont perturbé les bilans sédimentaires en surface (figure II.8) ou si l'on assiste simplement à une réorganisation amont/aval des surfaces de sables à l'intérieur du secteur considéré.

Cette notion est basée sur la relation suivante (figure II.8)

Figure II 8: Méthode d'évaluation des bilans de surface

-si $\Delta Su'+\Delta Su=\Delta Sd'+\Delta Sd$, alors on considérera que la tendance naturelle générale est maintenue dans le sens où l'évolution surfacique ne présente pas de modifications fondamentales. Cette situation pourra témoigner alors d'une redistribution longitudinale en surface du sable plutôt que d'une réelle érosion.

- si $\Delta Su' + \Delta Su \neq \Delta Sd' + \Delta Sd$, on admettra en revanche que le bilan sédimentaire a été modifié. Nous considèrerons alors que les ouvrages ont perturbé les bilans surfaciques et qu'ils sont à l'origine de modifications plus ou moins importantes du fonctionnement du secteur.

Il est important de rappeler que les ouvrages ne présentent pas les mêmes emprises longitudinales selon les secteurs. Aussi afin d'homogénéiser les résultats des divers site nous

avons ensuite rapporté l'ensemble de ces données sur une distance de 100m pour une période d'une année.

4. Méthode d'étude de l'érosion en aval dérive

Nous venons de décrire les méthodes utilisées pour étudier le fonctionnement général des secteurs étudiés. Nous allons maintenant aborder la méthode d'analyse du fonctionnement de l'érosion en aval dérive.

4.1 Définition des paramètres utilisés dans l'étude

En l'absence d'études précises sur ce phénomène nous nous appuierons sur les paramètres utilisés dans les travaux Walton et Sensabaugh (1978), McDougal et Sturtevant (1987) et Basco (2004) pour des secteurs équipés de digues, et nous élargirons leurs concepts à nos secteurs (figure II.9).

Figure II 9: paramètres pris en compte pour l'étude de l'érosion en aval dérive

Ces paramètres se présentent sous 3 formes : les paramètres dynamiques (transport sédimentaire, (Q), le temps), les paramètres liés aux ouvrages (emprise longitudinale, Ls, distance en mer, Le) et les paramètres liés à l'érosion (extension longitudinale, s, extension transversale, r, distance du maximum d'érosion transversale par rapport au dernier épi, lr) (Figure II.9).

En ce qui concerne les données dynamiques, nous ne disposions pour cette étude que des données temporelles (variation dans le temps de la ligne de rivage) et des données, issues de la littérature, de transit sédimentaire dominant annuel (Q) sur les différents secteurs. Les

données relatives à la houle ne sont en revanche pas directement intégrées à ce travail. Il aurait été effectivement intéressant, dans le cas d'une évaluation à court terme de l'érosion en aval dérive (évènementielle, Leont'yev, 1996), de repositionner les données de ligne de rivage dans leur contexte météo marins respectifs, en particulier dans le cas de fortes tempêtes (direction de propagation, intensité de la houle avant et pendant le relevé), mais il a été impossible de compiler ces données pour chaque site sur l'ensemble de la période. L'étude se basera donc essentiellement sur une approche à moyen terme pour laquelle nous considèrerons le transport sédimentaire dominant annuel, comme valeur représentative de la dynamique sédimentaire annuelle (tableau II.6).

	Q m ³ /an	Q Moyen m ³ /an	Source
Grau de Vendres	35 000-39 000	37 000	Durand (1999)
Frontignan	100 000	100 000	Catalogue sédimentologique des côtes Françaises
Carnon	20 000	20 000	Catalogue sédimentologique des côtes Françaises
Les Baronnets	298 000 à 708 000	503 000	Sabatier (2001)
La Fourcade	75 000 à 359 000	217 000	Sabatier (2001)
Véran	49 000 à 532 000	290 500	Sabatier (2001)
La Courbe	12 000 à 232 000	122 000	Sabatier (2001)

Tableau II 6: Récapitulatifs des valeurs de transport sédimentaire longitudinal annuel.

En ce qui concerne les paramètres liés aux ouvrages nous retiendrons (Tableau II.7) :

-l'emprise longitudinale des aménagements (Ls)

-l'emprise transversales des ouvrages de la berme au musoir (Le)

-le rapport entre l'espacement (Es) et l'emprise transversale des ouvrages (Es/Le)

Sites	Longueur (Le)	Extension longitudinale (Ls)	Espacement (Es)	rapport Es/Le	
Grau de Vendres	200	164	Ouvrage unique		
Frontignan	70/100	2700	80	1.1 à 1.14	
Carnon	80/100	2820	100	0.85 à 1.25	
Espiguette	75	18000	110	1.46	
Fourcade	120	2170	ouvrages multiples		
Véran 115		2700	200	1.73	
La Courbe	80	4300	80	1	

Tableau II 7: Récapitulatifs des paramètres structuraux des épis en 2005.

Nous retiendrons pour les paramètres relatifs à l'érosion en aval dérive : -l'extension longitudinale de l'érosion en aval dérive du dernier ouvrage (s) -l'extension transversale de l'érosion en aval dérive du dernier ouvrage (r) -la distance du maximum d'érosion par rapport au dernier ouvrage (Lr)

4.2 Le traitement des données

Afin de définir un schéma de fonctionnement commun à l'ensemble des sections en aval dérive d'ouvrages transversaux sur les différents sites investigués, une confrontation des valeurs d'évolution en m/an a été effectuée par le biais de l'analyse statistique bivariée. Les coefficients de corrélations entre ces différentes variables seront établis afin de définir les liens entre les différents couples de variables. A partir de ces résultats, nous déterminerons les coefficients de détermination entre ces mêmes variables, dans le but de définir le niveau de pertinence des liens établis. Enfin, afin de vérifier la pertinence des éventuelles relations établies, à partir des droites de régression, nous effectuerons une confrontation entre les valeurs calculées et mesurées selon 4 étapes :

-construction d'un graphique représentant les valeurs des points mesurés et prédits, afin d'estimer visuellement la relation entre les prédictions et les mesures.

-analyse du coefficient de détermination : part de la variance expliquée par la régression.

-établissement du rapport entre les valeurs prédites et mesurées, utilisé par Van Rijn (1984), Sherman (1998), Jackson et al (1998). Les valeurs obtenues seront reportées sur un graphique en fonction des valeurs prédites afin de déterminer si un biais systématique vers des valeurs plus faibles ou plus fortes se produit par l'approche théorique.

Enfin nous définirons le pourcentage de l'erreur moyenne quadratique (RMS: *Root Mean Square*) (List et al., 1997, Rattanapitikon et Shibayama (2000). RMS est exprimé en pourcentage, de faibles valeurs indiquant une bonne simulation des valeurs mesurées.

$$RMS = 100 \sqrt{\frac{\sum_{i=1}^{m} (pr\acute{e}dit - mesur\acute{e})^{2}}{\sum_{i=1}^{m} (mesur\acute{e})^{2}}}$$

CHAPITRE 4: RESULTATS

La comparaison des variations du rivage autour des ouvrages de protection a permis d'obtenir deux types de résultats. Le premier porte sur la comparaison des variations du rivage avant et après l'implantation des ouvrages et le deuxième sur l'étude des caractéristiques de l'érosion en aval dérive et sa relation avec les caractéristiques des ouvrages et l'intensité du transport longitudinal.

1. Variations du rivage avant et après la construction des ouvrages

La comparaison des données de rivage à moyen terme, sur les sept secteurs étudiés, a permis d'extraire la tendance moyenne « naturelle » (avant la construction des ouvrages) et « influencée » (après la construction des ouvrages), que ce soit à l'intérieur des casiers des épis ou en aval dérive des ouvrages. Les données sont exprimées en mètres après avoir établi une moyenne des valeurs sur chaque période et pour chaque intervalle.

1.1 Vendres (Figure II.10)

Le Grau de Vendres, montre une forte accumulation en amont dérive, contre la digue en rive Est. La construction de l'ouvrage correspond à une inversion de tendance, en effet on passe de valeurs moyennes d'érosion comprises entre -1 et $-3m.an^{-1}$ à des valeurs d'accrétion de +2 à +3 m.an⁻¹. En revanche en aval dérive de l'exutoire, le phénomène inverse se produit avec un littoral en léger recul avant l'aménagement du Grau, à un rivage en recul plus prononcé en particulier sur les 500 premiers mètres à l'Ouest de l'ouvrage (-0.5 puis - 2.8m.an⁻¹). En revanche, on n'observe pas de modifications fondamentales de l'évolution de la ligne de rivage, avant et après la construction de l'ouvrage au-delà de cette distance.

Figure II 10: évolution du rivage au grau de Vendres et variations des valeurs (écart type)

On assiste donc bien ici à une inversion de dynamique en relation avec l'implantation des 2 digues transversales. Sur la partie amont on observe une très importante accumulation alors qu'en aval dérive l'érosion se développe.

En terme de variabilité inter-annuelle du rivage, une relative homogénéité apparaît, dans le sens ou avant et après l'édification des ouvrages les mêmes tendances sont conservées: une relative stabilité en aval dérive à partir de 400m de l'exutoire et une forte variabilité en deçà de cette limite, en particulier après 1989 à environ 300m à l'Ouest de l'exutoire, correspondant au maximum de recul.

1.2 Frontignan (Figure II.11)

Le secteur de Frontignan montre un fonctionnement plus complexe, qui réside d'une part dans le fait que les ouvrages ont été implantés à des dates différentes, mais surtout parce que deux sections sont affectées par un recul du rivage. Une première relative aux ouvrages construits jusqu'en 1978, et une deuxième relative à ceux construits en 1985.

Deux phénomènes sont mis en évidence sur ce secteur :

-Une relative stabilité du rivage voire une accrétion à la suite de l'implantation des ouvrages à l'ouest du secteur entre 1978 et 1986 (entre x=0 et x=1000m) et dans la partie centrale entre 1986 et 2005 (0 à 2500m).

-Une érosion rapide en aval dérive des ouvrages après leur implantation. Entre 1978 et 1986 les vitesses d'évolution en aval dérive passent de 0 à -2 à -4m.an⁻¹ sur près d'un kilomètre de plage (sur la première section x=1000 à 2000m). Entre 1986 et 2005, sur la deuxième section (x=2800 à 3500m), le recul est multiplié par 2, il atteint un peu plus de -2 m.an⁻¹. L'implantation d'une nouvelle série d'épis en 1986 à l'Est, se traduit également entre x=1000 et x=2500m (aval dérive de la première section aménagée jusqu'en 1978) par un ralentissement du recul du rivage qui passe de -4 à -1.5 m.an⁻¹.

Plus à l'Est, la tendance « naturelle » et les deux tendances « influencées » se recoupent et ne traduisent pas de modifications fondamentales de la dynamique de la ligne de rivage.

La complexité du fonctionnement de ce secteur réside également dans la variabilité spatiale et temporelle des taux d'érosion. Si la période « naturelle » montre une relative homogénéité le long du littoral considéré, les périodes « influencées » et en particulier 1978-1986 montrent de fortes variabilités des taux d'érosion plus particulièrement sur les secteurs ne comportant pas d'épis (entre x=1000 et x=2000m). Sur cette même section (x=1000 à x=2000m), en revanche, l'implantation des nouveaux ouvrages plus à l'Est (x=1800 à x=2500m) en 1986 se traduit par une variabilité de la position du rivage nettement moins forte, d'un facteur 2 à 5.

Au final, les épis ont permis ici un ralentissement relatif de l'érosion à l'intérieur des casiers mais ont généré d'importantes perturbations en aval dérive, avec une augmentation des taux de recul et de leur variabilité inter annuelle.

Figure II 11: évolution du rivage à Frontignan

1.3 Carnon (figure II.12)

La première période 1946-1965 se caractérise par une érosion relativement homogène sur l'ensemble du secteur avec des valeurs de recul moyen atteignant au maximum -1.5 m.an^{-1} (x=2000m).

L'implantation ouvrages, entre 1965 et 1983, génère une stabilisation à l'Ouest du secteur investigué et une avancée du rivage, avec près de +2 m.an⁻¹, à l'intérieur des casiers. En revanche immédiatement en aval dérive de la batterie d'épis, le recul du rivage augmente faiblement passant de -1.5m.an⁻¹ à -2 m.an⁻¹. Plus à l'Est les valeurs se stabilisent rapidement (x=2500 à 3500m), pour se réaligner sur la tendance naturelle.

La troisième période, entre 1985 et 2005, correspondant à la mise en place des derniers ouvrages (1983) vers l'Est, montre le même type d'évolution à savoir une stabilisation et une accumulation à l'intérieur des casiers $+1.5 \text{ m.an}^{-1}$ contre -1.5 m.an^{-1} durant la période

précédente. Les valeurs de recul moyen annuel augmentent rapidement en aval dérive avec près de -2 m.an⁻¹ à x=2500m contre un peu moins de -1 m.an⁻¹ les deux périodes précédentes. En revanche alors que pour les deux précédents intervalles de temps l'érosion se stabilisait vers l'Est, ici les pertes continuent sur encore 1.5km et ne se stabilisent que plus loin, vers x=4500m.

L'évolution de la variabilité des variations du rivage indique que les deux périodes influencées par la présence des ouvrages ont une très forte variabilité spatiale, en particulier entre 1983 et 2005. Au final on assiste à un déplacement des maximums d'érosion vers l'Est avec le temps et la construction des épis.

Figure II 12: évolution du rivage à Carnon

1.4 Le secteur des Baronnets (figure III.13)

Le secteur des Baronnets est certainement le plus représentatif de l'influence des ouvrages transversaux et pourrait constituer un cas d'école. Le nombre important de campagnes d'implantation des ouvrages, 9 entre 1975 et 1997, a fortement perturbé cette section du littoral Camarguais. Nous avons volontairement représenté ici les variations de la ligne du rivage suivant 4 périodes, afin de mettre en évidence l'impact des campagnes d'enrochements les plus importantes. La deuxième représentation graphique permet de visualiser l'impact de la totalité de la période d'aménagement (Figure II.13).

La première période (1872-1977) représentative du fonctionnement naturel du secteur témoigne d'un recul conséquent de la ligne de rivage entre le Rhône vif à l'Est, et les Baronnets (-2 m.an⁻¹). Le point d'inflexion (basculement de tendance évolutive) se situe alors à environ 5500m de la limite départementale Gard/ Bouches du Rhône (Rhône Vif).

La deuxième période étudiée (1977-1989), correspond à la première grande phase d'implantation des ouvrages. Avec des valeurs de recul moyen de près de -10 m.an⁻¹ pour les sections les plus sensibles, soit dix fois les valeurs de fonctionnement « naturel », cette période apparaît comme la plus érosive. Le point d'inflexion est quant à lui déplacé de 2km vers l'Ouest, traduisant une extension longitudinale importante du secteur en érosion. Cette période présente en contre partie une très forte accumulation à la pointe de l'Espiguette avec une avancée exceptionnelle du rivage de près de +50m.an⁻¹.

La troisième période (1989-1997) se caractérise par une relative stabilisation de l'érosion. Pour les sections les plus à l'Est, jusqu'à x=3500m, le littoral présente même ponctuellement un gain sédimentaire notoire, +2 à +3 m.an⁻¹. En revanche la tendance s'infléchit rapidement en aval dérive des nouveaux ouvrages, à partir de x=5000m, et les taux d'érosion augmentent (entre -5 et -12 m.an⁻¹) sur environ 2km. Le point d'inflexion se maintient à une distance de x=7500m. Les gains à l'Ouest, quant à eux, diminuent mais restent très importants, avec une avancée du rivage supérieure à +25m.an⁻¹.

La dernière période (1998-2005) prenant en compte les derniers ouvrages implantés en 1998, montre sur la section entre les épis des valeurs d'érosion équivalentes à la période en fonctionnement « naturel », soit -2 à -3 m.an⁻¹. L'implantation des derniers ouvrages a permis une stabilisation du rivage à l'endroit même (x=5500m) où les taux d'érosion atteignaient $-10m.an^{-1}$. En contre partie, en aval dérive des nouveaux ouvrages, une forte érosion apparaît avec un recul moyen de près de $-10m.an^{-1}$ pour les sections les plus affectées. Le point d'inflexion subit une nouvelle migration vers l'Ouest il se situe désormais à x=8500m soit 3000m de plus que pour la période au fonctionnement naturel (1872-1977).

Figure II 13: évolution du rivage aux Baronnets

Au final la comparaison de la période « naturelle » (1872-1977) et de la période longue au fonctionnement « influencé » (1977-2005) traduit de façon évidente une augmentation de l'érosion sur la quasi-totalité du linaire étudié ; seule la section à l'extrême Est apparaît stabilisée (x= 0 à 2500m). Le recul du rivage est en effet très important en aval dérive des derniers ouvrages, près de -10 m.an⁻¹, mais également à l'intérieur des casiers (-2 à -5 m.an⁻¹).

Il est intéressant de noter également comme sur les autres sites une augmentation de la variabilité des valeurs d'érosion après la construction des ouvrages, traduisant un fonctionnement dynamique particulièrement perturbé.

1.5 La Fourcade (figure II.14)

Ce secteur situé directement en aval dérive de la ville des Saintes Maries de la Mer, connaît comme les Baronnets une évolution particulièrement rapide.

La période dite naturelle (1872-1977) se caractérise par des valeurs d'érosion importantes à l'Ouest (-4 m.an⁻¹) diminuant progressivement vers l'Est pour atteindre le point d'inflexion vers X=4500m sur la figure II.14.

Figure II 14: évolution du rivage à la Fourcade

La période dite influencée, montre à l'Ouest de la section étudiée (X=0 à 500m) un ralentissement de l'érosion par rapport à la période naturelle (-1 à -2 m.an⁻¹). En revanche le recul du rivage augmente très rapidement (entre -6 et plus de -8 m.an⁻¹) en aval dérive du Pertuis, sur près de 3km (X=700 à 4000m). Le point d'inflexion (hors de la figure) est déplacé vers l'Est, étendant de ce fait la section en érosion.

Comme pour les autres sites il est important de noter encore une fois, comme le montre le graphique des variations (Figure III.14), la forte variabilité de l'évolution du secteur après la grande période d'aménagement.

Nous avons considéré ici l'érosion en aval du pertuis de la Fourcade mais il est évident que ce seul ouvrage n'est pas responsable de l'évolution décrite. La présence des ouvrages de protection devant la ville faisant office d'abri en amont dérive est aussi à prendre en compte. Mais nous voulions analyser surtout l'érosion aval dérive développée L'impact de la stabilisation du rivage du secteur de la ville des Saintes Maries de la Mer sera traité plus précisément dans la partie IV.

1.6 Véran (Figure II.15)

Le site de véran est particulier car d'une part les épis ont été implantés, à l'inverse des autres secteurs, de l'amont vers l'aval dérive, et d'autre part à l'Ouest des épis a été édifiée une digue de près de 3km. Cette dernière (digue de Véran) sera étudiée dans la troisième partie.

La période de fonctionnement « naturel » (1872-1989) se caractérise par des taux d'érosion augmentant progressivement d'Est en Ouest. Au niveau du Grau de la Dent le recul s'élève à environ -0.5 à $-1m.an^{-1}$ et à près de $-10m.an^{-1}$ au droit de l'actuelle digue de Véran.

La principale période d'implantation des ouvrages (1988-1998) se caractérise par un recul du rivage très important compris entre -5 m.an⁻¹ à l'Est et -25 m.an⁻¹ à l'Ouest. Globalement, les maxima d'érosion (supérieurs à -10 m.an⁻¹) se situent en aval dérive des épis. Ces valeurs sont certainement aussi à mettre en relation avec l'influence de la tempête cinquantenale de 1997, en fin de période analysée.

La période 1998-2005 n'a pas été étudiée. En effet, avec la reconstruction de la digue en 1998, en aval dérive des épis nous ne sommes plus dans le même contexte de fonctionnement, les évolutions du rivage ne seront donc pas représentatives de la seule influence des épis.

Figure II 15: évolution du rivage à Véran

Le secteur de Véran présente donc une évolution très rapide de la ligne de rivage en aval dérive des épis après 1988 en particulier entre x=2500 et x=5000m. Le recul du rivage y a été multiplié par 6 par rapport à la période au fonctionnement dit naturel.

1.7 La Courbe (figure II.16)

L'évolution du rivage au niveau de ce site s'apparente globalement à la tendance que l'on observe à l'Est des Saintes Maries de la mer (La Fourcade). En effet la tendance « naturelle » entre 1872 et 1970, témoigne d'une érosion accentuée à l'Ouest (-2 m.an⁻¹) qui diminue progressivement vers l'Est avec un point d'inflexion atteint à x=3000m.

La période après l'implantation des ouvrages entre 1970 et 2005, se caractérise par une stabilité à l'intérieur des casiers, mais une érosion rapide directement en aval dérive (environ -2 m.an⁻¹). Le point d'inflexion est déplacé de 2000m vers l'Est. Ici comme sur la majorité des sites nous observons une variabilité des valeurs d'évolution qui augmente après l'implantation des ouvrages.

Figure II 16: évolution du rivage à la Courbe

1.8 Conclusion

En définitive, en aval dérive sur l'ensemble des secteurs, les valeurs de recul du rivage et la variabilité des taux d'évolution se sont accélérés après l'édification des ouvrages.

Cette accélération de l'érosion directement en aval dérive prend un caractère différent selon les zones. Par ordre décroissant, les secteurs les plus touchés sont les suivants : les Baronnets, Véran, Fourcade, Frontignan, Carnon, Vendres et la Courbe. Sur la majorité des sites cette amplification des pertes s'est traduite par une migration du point d'inflexion de la ligne rivage vers l'aval dérive, illustrant l'effet « domino » mis en évidence sur le site de Valras par Paskoff (1997) et Durand (1999).

A l'intérieur des casiers l'érosion a été contenue (Frontignan, Carnon, La Fourcade, Véran et parfois même supprimée (Vendres). En revanche le site des Baronnets a montré une accentuation de cette érosion à l'intérieur des casiers mis à part la section Est, la plus anciennement aménagée de la zone étudiée.

Ces résultats montre donc que l'érosion en aval dérive apparaît parfois problématique puisqu'elle s'étend longitudinalement (déplacement du point d'inflexion) et semble s'amplifier transversalement (accentuation du recul du rivage) dans le temps. Il est donc important d'étudier et caractériser de façon approfondie le fonctionnement morphologique de la section située en aval dérive de la zone aménagée.

2. Variations à moyen termes des surfaces

Les variations à moyen terme, des surfaces de part et d'autre des ouvrages permettent de confirmer l'existence de fonctionnements bien différents sur les 7 sites. Ces surfaces ont été identifiées avant et après chaque grande période d'aménagement. La figure II.17, propose des bilans sédimentaires annuels amont (à l'intérieur des casiers d'épis), aval (aval dérive des ouvrages) et totaux sur chaque secteur. Nous avons également répertorié les coefficients multiplicateurs appliqués entre bilan en période de fonctionnement naturel et bilan en période de fonctionnement « influencé ».

Sur le site de Vendres, le coefficient multiplicateur (0.03) appliqué aux bilans sédimentaires surfaciques, entre période « naturelle » et période « influencée », montre une diminution du déficit sédimentaire surfacique sur le secteur, passant de -6755m².an⁻¹ entre 1965 et 1989, à -175 m².an⁻¹ entre 1989 et 2005. Cette tendance cache en fait un phénomène de compensation, après la période d'implantation des ouvrages, entre des pertes importantes en aval dérive (-4 388m².an⁻¹) et une forte accumulation en amont contre l'ouvrage (+4 215m².an⁻¹). Ici l'accumulation sédimentaire importante contre l'ouvrage en amont compense en grande partie les pertes de sable en aval dérive.

Le site de Frontignan présente en période naturelle (1946 à 1977) un bilan surfacique en déficit (-1 156 m².an⁻¹), réparti de façon quasi homogène en amont et en aval des futurs ouvrages. La première grande période d'aménagement présente un déficit multiplié par 2.4. L'accumulation entre les épis (+1 078 m².an⁻¹) ne permet pas de compenser l'érosion importante en aval-dérive des ouvrages (-3 905 m².an⁻¹). La deuxième période post-aménagement (1986-2005) montre la même tendance avec une accumulation à l'intérieur des casiers d'épis (1301 m².an⁻¹) largement inférieure au déficit en aval dérive (-3 725 m².an⁻¹).

Le site de Carnon se différencie par une importante perte surfacique en période « naturelle » (-2 434 m².an⁻¹) avec des pertes particulièrement fortes en aval dérive des futurs ouvrages. La première période d'aménagement (1965-1983) montre ensuite une diminution des pertes surfaciques (divisée par 3) à mettre en relation en particulier avec un gain à l'intérieur des casiers d'épis avec +1 141 m².an⁻¹ (signalons que ce secteur a bénéficié d'apport sédimentaire artificiel d'environ 10 000m³ lors de la construction du port pendant cette période). Le déficit est principalement du aux pertes en aval dérive (-787m².an⁻¹). La dernière période 1983-2005 retrouve un caractère très érosif en particulier en aval dérive (-2 190 m².an⁻¹), et présente une diminution des gains en amont (+381 m².an⁻¹). Au final, le bilan surfacique annuel est moins déficitaire en période au fonctionnement influencé qu'en période au fonctionnement naturel. L'érosion en aval dérive y est certes bien présente, mais les gains substantiels en amont permettent de réduit le déficit.

Aux Baronnets, le phénomène essentiel (rappelons que nous prenons en compte dans les calculs surfaciques les 18km de linéaire côtier aménagés) est l'importance des surfaces de sable mobilisées. La période naturelle se caractérise par une érosion au niveau des futurs ouvrages (amont) et une accumulation en aval des futurs ouvrages pour un déficit total de - 16533 m².an⁻¹. La première période d'implantation des ouvrages se caractérise par un fort déficit surfacique annuel en amont (-107 000 m².an⁻¹) comme en aval dérive (-13 541 m².an⁻¹). Durant cette période le déficit a été multiplié par 7.29 par rapport à la période au fonctionnement dit naturel. La deuxième période (1989-1998) voit le maintien de pertes importantes (-87 755 m².an⁻¹). Le déficit surfacique a diminué à l'intérieur des casiers d'épis mais l'érosion en aval dérive s'est accentuée (-14 133 m².an⁻¹). Enfin la dernière période (1998-2005) témoigne d'une diminution du déficit à l'intérieur comme en aval dérive des ouvrages. Les bilans surfaciques totaux sont quasiment équivalents aux valeurs de la période dite au fonctionnement naturel. Le secteur des Baronnets est donc un secteur particulièrement sensible : les ouvrages n'ont pas permis une accrétion sédimentaire surfacique, et l'érosion y est même particulièrement forte entre 1977 et 1998.

Le site de la Fourcade, présente globalement une accentuation des pertes surfaciques (multipliées par 1.33) entre la période au fonctionnement naturel (1872-1977) et la période influencée (1977-2005). Durant la période naturelle, le maximum de perte se trouvait au niveau des futurs ouvrages, alors que la section en aval dérive (des futurs ouvrages) présentait un déficit moindre. Après 1977 la tendance s'inverse, les ouvrages permettent une diminution des pertes en amont (divisées par 7) alors qu'en aval dérive elles sont affectées d'une augmentation d'un facteur 4.

Figure II 17: Bilan sédimentaire en surface en m² autour des ouvrages

Le site de Véran, comme les deux sites précédents, voit une accentuation des pertes surfaciques de 1.5 entre période au fonctionnement naturel et période au fonctionnement influencé. Le secteur en aval dérive est particulièrement concerné puisque le déficit annuel a doublé, alors que dans le même temps, à l'intérieur des casiers, l'érosion annuelle en surface a diminué.

Le site de la Courbe se caractérise par une inversion de tendance, L'érosion surfacique plus importante en amont dérive en période de fonctionnement naturel (-12 671 m².an⁻¹), diminue durant la période post aménagement (1950-2005). En aval-dérive, d'une accumulation

de +3 102 m².an⁻¹ en aval-dérive des futurs ouvrages en période naturelle, on passe à une érosion (-4 712 m².an⁻¹) entre 1950 et 2005. Au final le bilan sédimentaire surfacique a diminué entre la période dite naturelle et la période influencée.

Finalement 3 sites se démarquent par une diminution du déficit surfacique global, Vendres, Carnon, La Courbe. Sur ces sites l'augmentation du déficit en aval dérive est compensée par une importante diminution des pertes surfaciques en amont. Quatre sites se démarquent par une accentuation de l'érosion générale en surface Frontignan, Les Baronnets, La Fourcade et Véran. Sur ces sites la diminution du déficit surfacique en amont dérive, ne permet pas de compenser une érosion en augmentation en aval dérive.

3. Caractérisation de l'érosion en aval dérive des aménagements

Nous avons pu caractériser, à partir de l'étude de l'évolution surfacique des secteurs à l'intérieur et en aval dérive des casiers d'épis, la tendance sédimentaire globale en surface des différents sites face à l'implantation d'ouvrages transversaux en enrochement. Nous allons donc maintenant nous focaliser sur les variations du rivage en aval dérive des ouvrages en abordant les points suivants :

-L'influence des paramètres fixes dans la détermination de cette érosion. Nous désignerons par ce terme, l'ensemble des paramètres relatifs aux caractéristiques structurelles des ouvrages : leur emprise longitudinale (Ls) et transversale (Le).

-L'influence des paramètres dynamiques. Nous désignerons par ces termes les facteurs temps et le transport sédimentaire.

Nous aborderons d'une part l'évolution dans le temps des paramètres caractéristiques de l'érosion en aval dérive des ouvrages (r, lr et s) puis nous analyserons dans un deuxième temps, les relations existantes entre ces paramètres, les caractéristiques des ouvrages (Le, Ls) et le transport sédimentaire moyen (Q)

3.1 Evolution temporelle du rivage en aval dérive

Nous étudierons dans ce paragraphe l'évolution temporelle des 3 paramètres relatifs à l'érosion en aval dérive des épis, à savoir son extension transversale (r), son extension longitudinale (s) et la distance du maximum d'érosion (r) par rapport au dernier épis (lr) (cf.Figure II.9)

3.1.1 Evolution temporelle du recul transversal (r) du rivage en aval dérive des aménagements

La première constatation qui ressort de cette étude est une évolution globalement linéaire du recul du rivage (r) en aval dérive avec le temps sur tous les sites (figure II.18). La comparaison de cette érosion « influencée » avec les valeurs d'érosion « naturelle » dans le temps, révèle, comme décrit plus haut, une accentuation du déficit sédimentaire. En revanche le rapport existant entre l'érosion influencée et naturelle diffère selon les sites étudiés.

	Vendres	Vendres		Carpon	Les	La	Véran	La
	Vendres	1	2	Carnon	Baronnets	Fourcade	veran	Courbe
Recul naturel du rivage (m/an) Avant implantation des ouvrages	-1.00	-0.68	-1.00	-1.00	-2.90	-4.00	-1.70	-1.80
Recul du rivage après l'implantation des ouvrages (m/an)	-2.80	-1.50	-1.90	-1.90	-13.60	-9.30		-3.20
ratio	2.80	2.21	1.90	1.90	4.69	2.33		1.78

 Tableau II 8: recul du rivage (r) avant et après l'implantation des ouvrages sur les différents sites étudiés. Les calculs ont été effectués sur une section située en aval dérive des ouvrages.

Au Grau de Vendres, le recul à l'Ouest de l'embouchure de l'Aude avant le réaménagement de l'exutoire en 1989, s'élevait à 1m.an⁻¹, il est désormais de l'ordre de 2.8m.an⁻¹, soit une augmentation d'un facteur 2.8 (Tableau II.8).

A Frontignan, l'évolution dans le temps est assez différente selon la section considérée. La première section subit dans les premières années une érosion forte après 1978 (près de 25m en deux ans). Mais ces valeurs se stabilisent rapidement après l'implantation des ouvrages en 1984 plus à l'Est. La tendance générale présente au final une érosion qui diminue dans le temps sur cette section, les premières années sont très morphogènes, nous l'avons vu, et les dernières témoignent d'une certaine stabilité.

La deuxième section prise en compte après la mis en place des derniers ouvrages en 1985, témoigne en revanche d'une accentuation de l'érosion dans le temps. En effet la tendance érosive a presque doublé (1.9). Les premières années et les périodes courtes inférieures à 3 ans, génèrent une déstabilisation avec un recul très rapide qui se stabilise ensuite à un indice de 2 sur les périodes plus longues (Figure II.18).

Figure II 18: rapport érosion (naturelle/influencée en aval dérive) / temps

A Carnon, l'évolution est un peu plus homogène que sur les deux précédents sites. La tendance influencée est ici supérieure à la tendance naturelle d'un facteur 2.

Sur le secteur des Baronnets, la tendance « influencée », révèle une forte augmentation du recul lié aux ouvrages par rapport au recul naturel d'un facteur 4.3. Les premières années après l'édification des ouvrages et certaines périodes courtes sont particulièrement morphogènes et se caractérisent par des valeurs supérieures à la tendance moyenne.

A la Fourcade, les valeurs d'érosion ont été multipliées par un facteur 2.3 (Tableau II.8). C'est le deuxième secteur après celui des Baronnets le plus sensible à l'implantation des ouvrages.

A Véran même si le trop petit nombre de valeurs n'autorise pas une évaluation pertinente, le recul du rivage en aval dérive des ouvrages, est fort.

Enfin sur le secteur de la Courbe, un facteur 1.7 (tableau II.8) sépare l'érosion influencée de l'érosion naturelle.

Sur l'ensemble des secteurs les valeurs d'érosion augmentent plus rapidement avec le temps en aval dérive d'ouvrages transversaux (figure II.18) : on assiste à un recul continu du rivage sans stabilisation de l'érosion (sauf Frontignan (1)). Les secteurs des Baronnets, la Fourcade et Véran sont ceux qui montrent les écarts les plus importants entre tendance naturelle et tendance influencée.

3.1.2 Evolution temporelle de l'extension longitudinale (s) de l'érosion en aval dérive

Notons tout d'abord que nous ne présenterons l'évolution temporelle de ce paramètre qu'à partir de la mise en place des ouvrages, puisqu'il implique justement la présence d'ouvrages de protection transversaux en amont. Il est donc impossible de comparer ces valeurs avec une tendance dite « naturelle ». La première constatation qui ressort de cette étude est une tendance à l'extension longitudinale de l'érosion dans le temps (Figure II.19). Seule la première section de Frontignan dénote.

En effet le secteur de Frontignan est un peu particulier. La première section étudiée (1) ne présente qu'une évolution sur un peu moins de 10 ans. Les premières années sont les plus morphogènes, l'extension longitudinale de l'érosion diminue progressivement ensuite avec le temps. Ici la construction de nouveaux aménagements en 1985, plus en aval, a ralenti puis bloqué, l'extension longitudinale de l'érosion. La deuxième section montre en revanche une augmentation de ce paramètre dans le temps.

Figure II 19: évolution de l'extension longitudinale de l'érosion dans le temps

Figure II 20: distance du maximum d'érosion en fonction de la durée d'observation.

Les secteurs de Vendres, Carnon, Les Baronnets, et La Courbe montrent quant à eux une tendance évidente à l'extension longitudinale de cette érosion avec le temps. Le site de Véran, avec un trop faible nombre de points, encore une fois ne permet pas de dégager une tendance évidente.

Notons que les sites des Baronnets, La Fourcade (et vraisemblablement Véran) montrent une extension longitudinale de l'érosion largement plus importante que sur les autres sites, sur une dizaine d'année la distance en érosion y est en effet trois fois plus importante. Le site de Vendres présente l'érosion la moins importante. Les sites de Frontignan (2), Carnon et La Courbe montrent une tendance relativement identique.

3.1.3 Evolution temporelle de la distance du maximum d'érosion (lr), par rapport au dernier épis,

L'évolution du paramètre (lr) est la moins évidente (Figure II.20). Seul le secteur de La Fourcade présente une relation linéaire entre ce paramètre et la durée des observations.

La section(1) à Frontignan témoigne d'un distribution relativement aléatoire des valeurs de lr en fonction du temps. Les autres sites , Vendres, Frontignan(2), Carnon, La Courbe, et dans une moindre mesure les Baronnets semblent témoigner quant à eux d'une relative stabilisation dans le temps de lr.

3.1.4 Conclusion partielle

Finalement nous avons pu voir dans ces trois paragraphes que la majorité des sites présentent globalement une relation linéaire entre recul du rivage et intervalles de temps. Une nuance doit être apportée en revanche sur les périodes courtes, correspondant d'une part au recul du rivage directement postérieur à la date d'implantation du dernier ouvrage, et d'autre part à l'influence certaine des épisodes de tempête. En effet pour ces relevés, les fortes valeurs de recul ponctuel sont contradictoires avec cette tendance linéaire globale (figure II.18). Cet élément permet d'avancer qu'une réponse rapide du rivage apparaît les premières années après l'implantation des ouvrages Cette constatation illustre probablement un double phénomène de « gommage » temporel de l'effet d'épisodes météo marins sur les variations de la ligne de rivage et de maintien d'une érosion forte en aval dérive même sur les périodes relativement longues. Nous avons également pu mettre également en avant une augmentation sur la quasitotalité des sites de l'extension longitudinale de l'érosion dans le temps.

Ces deux éléments semblent démontrer un lien notable entre l'évolution de l'érosion transversale et l'évolution de l'érosion longitudinale en aval dérive des sites. En revanche le paramètre lr a montré une faible dépendance avec la durée de l'observation.

Au-delà de la simple relation entre les valeurs des trois paramètres (r), (s), (lr) et le temps, nous allons nous intéresser maintenant à caractériser cette érosion sur l'ensemble des sites, en fonction des dynamiques de transport sédimentaire, selon les différents types d'ouvrages.

3.2 Corrélations entre le recul du rivage en aval dérive, le transport sédimentaire et les caractéristiques des ouvrages.

Les relations entre le recul du rivage sont déterminées au moyen d'une analyse bivariée conduite sur l'ensemble des sites.

Nous avons retenu 3 variables relatives aux caractéristiques des ouvrages (leur extension longitudinale (Ls), leur extension transversale (Le), le rapport Ls/Le (ce rapport Ls/Le permet de définir la caractéristique structurelle majeur des sites, un rapport faible désigne une représentation plus forte sur le site de l'extension transversale des ouvrages, alors qu'un rapport fort définit une représentation plus importante de l'extension longitudinale) et le transport sédimentaire annuel moyen (Q). Ces données ont été confrontées aux trois variables relatives aux caractéristiques de l'érosion en aval dérive : l'extension de l'érosion transversale (r) et longitudinale (s) et la distance du maximum d'érosion (lr) en m/an. Nous avons choisi, dans le but de définir un schéma de fonctionnement commun aux plages microtidales sableuses, d'étudier dans un premier temps les données moyennées de chaque site. Nous vérifierons par la suite la pertinence du schéma établi, en testant l'ensemble des données mesurées avec les données calculées.

Pour cette analyse bivariée, nous retiendrons, selon la table de Bravais Pearson, un seuil de significativité des corrélations à 0.83.

La matrice de corrélation correspondant au croisement de l'ensemble de ces variables en utilisant des valeurs moyennées de (r) (s) et (lr), (Tableau II.9) permet de montrer dans un premier temps que les variables relatives aux caractéristiques des ouvrages (extension transversale (Le), extension longitudinale (Ls)) ne présentent aucune corrélation significative avec les variables de mobilité du rivage en aval dérive.

Matrice de corrélation	(Le) Longueur epis	(Ls) Extension des épis	transport sédim Q	rapport Ls/Le	(r) moyen m/an	(s) moyen m/an	(Ir) moyen m/an
(Le) Longueur epis	1						
(Ls) Extension des épis	-0.45	1					
transport sédim Q	-0.31	0.84	1				
rapport Ls/Le	-0.36	0.97	0.89	1			
(r) moyen en m/an	-0.09	0.76	0.92	0.80	1		
(s) moyen en m/an	-0.22	0.61	0.85	0.69	0.93	1	
(Ir) moyen en m/an	-0.19	0.80	0.77	0.80	0.83	0.84	1

Tableau II 9: matrice de corrélation utilisant les caractéristiques moyennes annuelles de l'érosion en aval dérive

En revanche avec un coefficient de corrélation de 0.93, l'érosion transversale (r) et l'érosion longitudinale en aval dérive (s) montrent une évolution simultanée. Les corrélations entre lr et r, et, s et lr sont à la limite du seuil de significativité, avec des coefficients de respectivement 0.83 et 0.84. Deux autres couples de corrélations se détachent. En effet l'intensité moyenne du transport sédimentaire (Q) est corrélée positivement avec l'évolution transversale (r) et longitudinale (s) de l'érosion en aval dérive des ouvrages.

Ces résultats définissent uniquement une tendance générale. A partir de ces relations il est essentiel de vérifier la pertinence de ces relations.

3.2.1 Relation entre les paramètres r, s, et lr, relatifs aux caractéristiques de l'érosion en aval dérive.

3.2.1.1 Relations entre (r) et (lr)

Nous avons pu voir dans le paragraphe précédent une certaine corrélation entre les valeurs moyennes de lr et r. Nous avons donc étudié dans ce paragraphe l'ensemble des données dont nous disposions. La figure II.21, présente la droite de régression et sa part de contribution à l'explication de la variance des deux variables ($R^2=0.58$).

Figure II 21: relation entre érosion transversale (r), et distance du maximum d'érosion (lr) par rapport au dernier épi

Nous avons ensuite évalué la pertinence réelle de cette relation en confrontant le (lr) mesuré au (lr) calculé à partir de la relation précédente (figure II .21):

 $lr_{(m.an^{-1})} = 9.5r_{(m.an^{-1})}$

Figure II 22 comparaison de (lr) mesuré et (lr) calculé (a), et validation de la relation lr=9.5r (b)

Le coefficient de détermination est acceptable, mais insuffisant dans le cadre de cette étude, pour déterminer de façon évidente une relation entre le (lr) mesuré et (lr) calculé (figure II.22) Les résultats ne permettent pas de confirmer la pertinence de la relation établie entre lr et r.

	Vendres	Frontignan 1	Frontignan 2	Carnon	Baronnets	Fourcade	Véran	La Courbe	moyenne
RMS	1.990	1.105	3.413	2.375	0.302	0.326	12.984	3.288	1.078

Tableau II 10: erreur moyenne quadratique associée à la relation entre lr et r sur chaque site

Les RMS relativement élevés (tableau II.10) sur l'ensemble des sites confirment le caractère non pertinent de la relation.

3.2.1.2 Relations entre (r) et (lr)

Sur le même principe, nous avons étudié la relation entre lr et s, sur l'ensemble des données. La confrontation des valeurs de lr et s (figure II.23) permet d'établir la droite de régression et sa part de contribution à l'explication de la variance des deux variables ($R^2=0.59$).

Nous avons ensuite évalué la pertinence réelle de cette relation en confrontant le (lr) mesuré au (lr) calculé à partir de la relation précédente :

$$lr_{(m.an^{-1})} = 0.39s_{(m.an^{-1})}$$

Figure II 23: relation entre érosion longitudinale (r), et distance du maximum d'érosion (lr) par rapport au dernier

Le coefficient de détermination est une nouvelle fois acceptable, statistiquement parlant, mais insuffisant pour définir de façon évidente une relation entre le (lr) mesuré et (lr) calculé (figure II.24). Ces résultats ne permettent donc pas de confirmer la pertinence de la relation établie entre lr et r.

Figure II 24 : comparaison de (lr) mesuré et (lr) calculé (a), et validation de la relation lr=0.39s (b)

Les RMS (Tableau II.11) relativement élevés sur l'ensemble des sites confirment le caractère non pertinent de la relation.

	Vendres	Frontignan 1	Frontignan 2	Carnon	Baronnets	Fourcade	Véran	La Courbe	moyenne
RMS	0.903	0.596	2.044	0.475	0.241	0.255	3.843	1.588	1.078
								-	

Tableau II 11: erreur moyenne quadratile associée à la relation entre lr et s sur chaque site

3.2.1.3 Relations entre (r) et (s).

Les résultats de l'analyse bivariée précédente avaient permis d'établir une corrélation significative entre l'érosion moyenne annuelle transversale et longitudinale en m/an. Afin de valider cette relation nous avons étudié, sur le même principe que les paragraphes précédents, l'ensemble des données relatives à (r) et (s) sur l'ensemble des sites. La confrontation de l'ensemble des vitesses de recul transversal du rivage sur les périodes post aménagement (r) et de l'extension longitudinale de l'érosion (S) sur l'ensemble des sites, (figure II.25) permet de confirmer l'existence d'une relation entre ces deux variables (R²=0.71). Selon cette relation, l'extension longitudinale de l'érosion représenterait 18.8 fois l'érosion transversale. Cette relation impliquerait donc une réponse identique et couplée des valeurs du recul du rivage transversal et longitudinal. Cette relation s'exprime par

$$s_{(m.an^{-1})} = 18.8r_{(m.an^{-1})}$$

Figure II 25: relation entre érosion transversale moyenne (r) et longitudinale moyenne (s)

Avec un coefficient de détermination de 0.76 (soit un r=0.85) les valeurs calculées avec la formule précédente sont cohérentes avec les valeurs mesurées sur les différents sites (figure II.26). Néanmoins il apparaît que les données calculées semblent surestimer les données mesurées pour les valeurs faibles de (s).

Figure II 26 : Comparaison de s calculé et s mesuré (a) et Validité de la relation s=18.8r (b)

De plus, il est intéressant également de noter que les erreurs moyennes quadratiles, (Tableau II.12) sont plus élevées sur les sites de Vendres, Frontignan, Carnon.et la Courbe En revanche la relation semble bien s'appliquer aux sites camarguais des Baronnets, la Fourcade et Véran

	Venrdres	Frontignan 1	Frontignan 2	Carnon	Baronnets	Fourcade	Véran	La Courbe	moyenne
RMS	1.027	0.979	0.965	1.015	0.964	0.828	0.833	0.749	0.644

Tableau II 12: erreur moyenne quadratique associée à la relation entre lr et s sur chaque site

La comparaison des deux variables permet de vérifier la relation définie dans ce paragraphe entre (r) et (s).

3.2.2 Relation entre l'érosion en aval dérive (r et s) et le transit littoral (Q).

Les résultats de l'analyse bivariée précédente ont permis d'établir également une corrélation significative entre l'érosion moyenne transversale et longitudinale en m/an et le transport sédimentaire annuel. Cette corrélation intéressante mérite d'être précisée. Notons que, compte tenu du fait que nous ne disposions pas de données précises de transit sédimentaire correspondant aux dates de nos relevés de rivage, nous avons intégré des valeurs moyennées pour Q, r et s. L'utilisation d'une valeur moyenne annuelle de transit ne nous permettra donc pas d'effectuer une vérification des relations calculées pour l'ensemble des données de r et s.

Figure II 27: relation entre le transport sédimentaire (Q) et l'érosion transversale (r) sur les secteurs du Grau de Vendres (1), Frontignan 1 (2.1) et 2 (2.2), Carnon (3), Les Baronnets (4), La Fourcade (5), Véran (6) et La Courbe (7)

Figure II 28: relation entre le transport sédimentaire (Q) et l'érosion longitudinale (s) sur les secteurs du Grau de Vendres (1), Frontignan 1 (2.1) et 2 (2.2), Carnon (3), Les Baronnets (4), La Fourcade (5), Véran (6) et La Courbe (7)

Les corrélations proposées par les figures II.27 et II.28, montrent que l'extension transversale et longitudinale de l'érosion en m/an est proportionnelle au transport sédimentaire longshore annuel. Les coefficients de détermination respectifs ($R^2=0.84$ et $R^2=0.8$) définissent une bonne représentation de la variance des deux couples de variables. Nous retiendrons les relations suivantes

$$s_{moy(m.an^{-1})} = 0.0007 Q_{(m^3.an^{-1})}$$
$$r_{moy(m.an^{-1})} = 0.00003 Q_{(m^3.an^{-1})}$$

Ces trois paragraphes ont permis de confirmer et justifier une seule relation pertinente entre l'extension longitudinale et transversale de l'érosion. Le transport sédimentaire moyen intervient également dans l'explication des variations de ces deux variables (r) et (s). En revanche aucune relation pertinente n'a pu être établie entre les caractéristiques structurelles des ouvrages et les caractéristiques de l'érosion en aval dérive.

CHAPITRE 5: DISCUSSION

Le tableau présentant un récapitulatif des paramètres structuraux des ouvrages (tableau II.7) a permis dans un premier temps de proposer un rapport S/Le (Espacement des ouvrages / extension transversale des ouvrages) différents selon les sites. Ce rapport oscille entre 0.8 et 1.7. A ce propos les travaux de Dong (2004) au Royaume Uni, ont permis de définir pour les plages sableuses un rapport optimum de Es/Le pour des valeurs inférieures à 1 dans le cas d'une extension transversale de l'ouvrage de l'ordre de 70m. Plus généralement Dong (2004) observe de meilleurs résultats pour des rapports Es/Le faibles et des ouvrages longs. Par conséquent, sur les secteurs présentant une succession d'épis (Frontignan (1) et (2), Carnon, Les Baronnets, et Véran), le ratio Es/Le supérieur à 1 suggère donc un disfonctionnement de l'efficacité des épis.

Les résultats ont permis dans un deuxième temps de mettre en évidence l'existence d'une forme d'érosion en aval dérive des ouvrages, déja largement documentée dans la littérature : Walton et Sensabaugh (1978), Mc Dougal et al (1987), Brunn (1995, 2001), Paskoff (1998), Durand (1999) et Basco (2003). La comparaison des vitesses de recul (r) avant et après leur implantation a démontré, sauf rare exception, une accélération des pertes par recul du trait de côte sur l'ensemble des sites. Nous avons pu également démontrer l'augmentation de la variabilité longitudinale des valeurs de recul du rivage après la construction des épis (Figure II.10 à II.16).

Par la suite, l'étude des surfaces érodées a mis en évidence des réponses différentes des sites à la présence d'ouvrages transversaux en enrochement. Trois sites se démarquent par une diminution du déficit surfacique global, Vendres, Carnon, La Courbe. Sur ces sites l'augmentation du déficit en aval dérive est compensée par une importante diminution des pertes surfaciques en amont. Quatre sites se caractérisent par une accentuation de l'érosion générale en surface Frontignan, Les Baronnets, La Fourcade et Véran. Sur ces sites la diminution du déficit surfacique en amont dérive, ne permet pas de compenser une érosion en augmentation en aval dérive (figure II.17).

Notre étude a pu également démontrer que la majorité des sites présentent une relation linéaire entre recul du rivage et intervalle de temps (en tout cas pour les périodes longues) en dévoilant un double phénomène (Figure II.18):

-un lissage temporel de l'effet de l'irrégularité des épisodes météo marins (épisodes à courts termes) sur les variations de la ligne de rivage

-le maintien d'une érosion forte en aval dérive même sur les périodes relativement longues.

L'augmentation des valeurs d'érosion longitudinale dans le temps a également pu être démontrée. En revanche l'évolution dans le temps de la distance du maximum d'érosion n'a pas montré de tendance évidente.

Nous avons pu par la suite établir une relation proportionnelle d'une part entre l'extension de l'érosion longitudinale (s) et transversale (r) de l'érosion en aval dérive (figure II.28) et d'autre part entre l'intensité de la dérive littorale (Q) et les caractéristiques de l'érosion (s) et (r) (figure II.27 et II.28).

Nous n'avons pas pu en revanche établir de relation proportionnelle pertinente entre les caractéristiques de l'érosion en aval dérive et les caractéristiques structurelles des ouvrages (Ls, Le), comme ont pu le montrer Mc Dougal et al (1987), et Walton et Sensabaugh (1978) sur les sites équipés de digues.

Finalement l'ensemble de ces résultats démontre que la simple relation dimensionnement ouvrage/ extension de l'érosion n'est pas suffisante pour caractériser de façon pertinente les fluctuations de la ligne de rivage autour des ouvrages transversaux. Les facteurs dynamiques et le transport sédimentaire doivent également être pris en compte comme nous avons pu le démontrer.

Il est important également de rappeler que ces résultats portent sur les tendances à moyens termes (20 ans an moyenne) pour lesquelles nous avons considéré le transport sédimentaire dominant annuel comme représentatif des conditions dynamiques moyennes, luimême résultant des caractéristiques annuelles moyennes de houle (incidence, énergie). Nous n'avons effectivement pas pu prendre en compte les données de houle avant chaque relevé de ligne de rivage (DGPS, numérisation de carte du SHOM, photo-interprétation), comme le conseille Leont'yev (1996), qui a démontré à partir de modèle numérique générant une houle monochromatique, l'importance de la prise en compte de l'incidence de la houle dans l'évaluation de l'érosion en aval dérive pour des phénomènes météo marins évènementiels. Néanmoins nos résultats restent pertinents sur une approche à moyen terme, car ils intègrent implicitement la force et la direction de la houle à travers la dérive littorale.

De plus, cette étude était essentiellement axée sur l'évaluation de la mobilité de la ligne de rivage, et portait donc sur l'appréhension des variations de surface. Il aurait été intéressant, si les données avaient été disponibles, de coupler nos résultats avec des relevés en domaine immergé notamment pour l'étude des bilans sédimentaires.

Au final ces résultats fournissent une base nouvelle à l'étude de l'impact des ouvrages de protection transversaux. A l'avenir, les mesures d'agitation et de variations topo-
bathymétriques fines seraient nécessaires pour compléter la connaissance du fonctionnement in situ de plage équipées d'épis.

CHAPITRE 6: CONCLUSION

Notre étude a pu démontrer que l'érosion en aval dérive des ouvrages était généralement doublée par rapport aux valeurs d'érosion en période de fonctionnement naturel.

L'analyse des évolutions surfaciques avant et après l'édification des ouvrages, à l'intérieur et en aval dérive des épis a révélé deux tendances. Trois sites se démarquent en effet par une diminution du déficit surfacique global (Vendres, Carnon, La Courbe). Sur ces sites l'augmentation du déficit en aval dérive est compensée par une importante diminution des pertes surfaciques en amont. Quatre sites se démarquent par une accentuation de l'érosion générale en surface Frontignan, Les Baronnets, La Fourcade et Véran. Sur ces sites la diminution du déficit surfacique en amont dérive, ne permet pas de compenser une érosion en augmentation en aval dérive.

Nous avons également mis en évidence sur l'ensemble des sites une relation linéaire entre intervalles de temps (en particulier sur les périodes longues) et valeurs d'érosion en aval dérive (érosion transversale et longitudinale). Ces résultats vont à l'encontre de certains travaux qui démontrent une stabilisation rapide de l'érosion en aval dérive des ouvrages implantés.

Cette étude a pu confirmer l'impact négatif de l'implantation d'ouvrages transversaux en aval dérive sur des secteurs où le transit littoral est important.

Enfin nous avons mis en évidence la nécessité de prendre en compte les caractéristiques du transport sédimentaire dans la compréhension du fonctionnement de plage équipées d'ouvrages transversaux.

Globalement nous retiendrons les résultats suivants

-L'érosion transversale est proportionnelle à l'érosion longitudinale suivant la relation :

$$s_{(m.an^{-1})} = 18.8r_{(m.an^{-1})}$$

-L'érosion transversale est proportionnelle à l'intensité du transport sédimentaire suivant la relation :

$$r_{moy(m.an^{-1})} = 0.00003Q_{(m^3.an^{-1})}$$

-L'érosion longitudinale est proportionnelle à l'intensité du transport sédimentaire suivant la relation :

$$S_{moy(m.an^{-1})} = 0.0007 Q_{(m^3.an^{-1})}$$

Au final nous avons pu définir,

-Pour le Languedoc, une érosion faible à modérée, fonction de l'intensité du transit sédimentaire moyen, avec :

```
r=1.5 à 3m/an
s=15 à 25m/an
```

-Pour le Delta du Rhône, une érosion modérée à très forte, fonction de l'intensité du transit sédimentaire moyen, avec :.

r=1.7 à 13m/an s=22 à 79m/an

Au-delà de l'étude même de l'impact de ces ouvrages sur les plages adjacentes nous soupçonons également une influence importante des ouvrages longitudinaux (digue frontale) au droit comme en aval dérive (la très forte variation des valeurs d'érosion à partir de 1995-1998 au niveau du site de Véran en est l'illustration. C'est l'objet du prochain chapitre.

PARTIE III : ETUDE DE L'IMPACT D'UNE DIGUE FRONTALE SUR UNE PLAGE SABLEUSE

CHAPITRE 1: INTRODUCTION ET ETAT DES LIEUX SUR LA QUESTION

L'implantation de digues longitudinales sur le littoral est une pratique relativement courante en ingénierie côtière, et constitue une autre réponse à la question du recul du rivage.

Ces ouvrages en dur sont essentiellement utilisés dans le but de stopper le recul du rivage et/ou de limiter les inondations marines pendant les tempêtes. Nous présenterons, une synthèse bibliographique sur la question de l'impact d'une digue frontale sur l'avant côte, puis nous aborderons, dans ce chapitre 1, la présentation du site investigué dans cette partie III.

1. Synthèse bibliographique

L'implantation d'ouvrages de ce type, dans la mesure où leur principe originel est de s'opposer directement aux dynamiques érosives, notamment en brisant brutalement l'énergie de la houle à la côte, modifie le système plage, et induit des interactions importantes avec le milieu dynamique (eau/sédiment). La façon dont ce milieu est modifié et l'intensité de ces modifications induites par ces ouvrages, ont fait l'objet de nombreuses recherches.

Ces thématiques ont été abordées soit, par des modèles physiques ou numériques en laboratoire (Dorland 1940, Russel et Inglis, 1953, To et al 1969, Komar et Mc Dougall, 1988, Rakha et Kamphuis, 1997; Neelamani et Sandha, 2003) soit, dans une moindre mesure, par des observations et des mesures in- situ (Escoffier, 1951 ; Carter et al., 1986 ; Griggs et Tait, 1988 ; Miles, 2001 ; Wiegel 2002). Krauss (1988) et Tait et Griggs (1990) ont effectué une synthèse des points généralement débattus sur cette thématique de l'étude, l'évaluation et la compréhension des variations morphologiques et dynamiques, induites par l'implantation d'ouvrages de ce type. Ces différents points peuvent être regroupés en « perturbations morphologiques », et « perturbations hydrodynamiques »

Sur la question des modifications morphologiques, les interrogations suivantes sont développées (Figure III.1)

1-Assiste-t-on à un affouillement en pied d'ouvrage ?

2-Assiste-t-on à une modification des fonds au droit de l'ouvrage ?

3-Quelles sont les conséquences de l'implantation de digue sur les secteurs adjacents ?

4-Quelle est la capacité des secteurs endigués à reconstituer une plage pendant les périodes de beau temps ?

Sur les thématiques de l'hydrodynamique, et des turbulences susceptibles de mettre en mouvement un volume sédimentaire important les questions souvent abordées sont :

5-Quelles sont les conséquences de l'interaction ouvrage / houle notamment en termes de réflectivité ?

6-Assiste-t-on à une modification des dynamiques de courant par une accentuation des courants longitudinaux (longshore) et une fréquence accrue des dynamiques transversales (cross shore) ?

1.1 Les perturbations morphologiques

Assiste-t-on à un affouillement en pied d'ouvrage ?

Les premières études physiques ont commencé dans les années 40 et 50, avec des travaux portant essentiellement sur le phénomène d'affouillement. Dorland (1940) a démontré que l'affouillement était en relation avec les turbulences induites par l'interaction houle / ouvrage générant une accentuation de la mise en suspension des sédiments en pied d'ouvrage et leur remobilisation par les dynamiques de transport. Russel et Inglis (1953) ont rapporté l'affouillement, et la morphologie sous marine, aux dynamiques réflectives induites par l'ouvrage.

Dans les années 60, les travaux ont essentiellement porté sur l'étude du couplage mobilisation sédimentaire en pied d'ouvrage, et caractéristiques des houles. Russel et Inglis (1953) tout comme Sawaragi et Kawasaki (1960) ont montré que cet affouillement était égal à la hauteur de la houle incidente. Sato et al., (1969) retrouvent le même type de relation avec une profondeur d'affouillement approchant la hauteur significative maximale de la houle pendant les tempêtes. Herbich et al., (1965), Herbich et Ko, (1969), quant à eux, montrent que l'extension de l'affouillement est égale à la moitié de la longueur d'onde de la vague incidente et qu'il décroît avec la diminution de la réflexion. Sawaragi (1967) à ce propos donne une valeur seuil de réflexion de 0.25 au dessus de laquelle l'affouillement se produit.

Sur cette thématique, de nombreuses autres études ont permis de confirmer et de relier l'évolution (accrétion ou érosion) de l'affouillement avec les caractéristiques de houles, hauteur, période et cambrure (Chestnutt et Schiller, 1971 ; Song et Schiller, 1977 ; Hattori et Kawamata, 1977; Sexton et Moslow, 1981 ; Dewall et Christenson, 1984 ; Nadaoka 1985 ; Kriebel et al., 1986 ; Kriebel, 1987 ; Griggs et Tait, 1988 ; Tait et Griggs, 1990 ; Twu et Lio, 1999 ; El-Bisy, 2006).

Y a-t-il systématiquement des formes d'ondulations morphologiques ? Quelles sont leurs évolutions sur les profils au droit des ouvrages ?

Les études théoriques et en laboratoire ont montré qu'un profil ondulatoire peut être formé par les phénomènes de réflexion au droit de l'ouvrage (Russel et Ingliss 1953 ; Herbich et al 1965 ; Sato et al 1969 ; Xie 1985). Cependant ce phénomène n'a pas été observé in situ. En revanche si un apport sédimentaire existe, un système de barre d'avant côte peut se développer de façon identique sur un secteur aménagé et non aménagé (Moni 1973 ; Mac Donald et Patterson 1985 ; Baba et Thomas 1987 ; Dette et Gartner 1987)

Y a-t-il des similitudes entre les formations sous marines (barres d'avant côte) au droit et en aval dérive de l'ouvrage?

Certains auteurs, Baba et Thomas (1987), Dette et Gartner (1987), ont montré que le système de barre est similaire au droit comme en aval dérive d'une digue. Dette et Gartner (1987) ont pu démontrer également, à partir de la comparaison de profils avant et après la construction de digues, la présence d'un système de barres d'avant côte similaire (Ile de Sylt, West Germany). Kriebel (1987) rajoute quand à lui que la présence d'un affouillement est significative d'une différence entre les deux secteurs. En terme de mobilité des barres d'avant côte, Morton (1988) a montré une migration vers la côte de ces barres, sur les profils au droit d'une digue.

Plus globalement certains tests en laboratoire ont montré que la pente d'équilibre est relativement identique sur les profils équipés et non équipés de digues.

Y a-t-il une modification des bilans sédimentaires au droit de la digue ?

Certaines études n'ont montré aucune différence entre les taux d'érosion au droit, et de part et d'autre des ouvrages,.(modèle physique :Barnett 1987, mesures in situ Birkemeier 1980 ; Sexton et Moslow 1981 ; Birkemeier et al 1987 ; Kriebel 1987). Etant donné que la majorité des ouvrages a été implantée sur des secteurs en érosion, le problème essentiel est ici, de différencier l'érosion naturelle, de l'érosion générée réellement par l'ouvrage.

Figure III 1: Schématisation des effets possibles de l'implantation d'une digue (Kraus 1988, Complété)

Il est donc important de comparer des données avant et après la construction, ainsi que des données devant et en aval dérive des ouvrages sur la totalité de la plage. Sur ce dernier point les études sont souvent en contradiction.

Certains travaux, (Mac Donald et Patterson 1985, Baba et Thomas, 1987, Dette et Gartner, 1987, Kriebel 1987, Krauss et al 1988, Griggs et Tait 1988, Wiegel, 2002), ont permis d'observer une similitude d'évolution sur les profils naturels et « endigués ». La forme des profils change peu et le processus de reconstruction n'est pas altéré dans des environnements à zone de déferlement développée, et dans le cas d'apports sédimentaires.

D'autres travaux ont démontré au contraire l'effet négatif des digues. Morton (1988) a montré notamment que les digues peuvent accentuer localement l'érosion et diminuer les processus de reconstruction, dans le cas où la plage devant l'ouvrage est étroite. D'autres études sont en accord avec ces résultats en laboratoire (Russel et Ingliss 1953, Chestnutt et Schiller 1971, Hattori et Kawamata 1977) et à partir de mesures in-situ (Moni 1973, Walton et Sensabaught 1979; Sexton et Moslow 1981; Berrigan 1985a, b; Carter et al., 1986; Baba et Thomas 1987; Davis et Andronaco 1987; Kriebel 1987; Sayre 1987; Morton 1988; Wood 1988; Komar et Mc Dougall, 1988; Jones et Basco 1997; Fletcher et al 1997; Hee Jun Lee et al., 1999; Miles et al., 2001°). Plus généralement différents mécanismes pouvant conduire à une accélération de l'érosion peuvent être identifiés

Le positionnement de la digue sur le profil.

Même si la plupart des exemples (en laboratoire ou in situ) démontrent que les digues n'empêchent pas forcément les processus de reconstruction de la plage (Laboratoire : Dorland 1940, Hattori et Kawamata 1977, Barnett 1987, in situ : Sexton et Moslow 1981, Mac Donald et Patterson 1985, Baba et Thomas 1987, Kriebel 1987, Griggs et Tait 1988, Morton 1988, Wood 1988, Jones et Basco 1997, Wiegel 2002), la position de la digue sur le profil peut déterminer, en revanche, des remontées très variables de sédiments vers le rivage. De plus, Sayre (1987) démontre que dans le cas de secteurs en déficit sédimentaire et/ou de concentration de l'énergie de la houle, la reconstruction est fortement ralentie.

Weggel (1988) à partir de l'étude et la comparaison de différentes digues en domaine meso ou macro tidal, effectue une classification suivant la localisation de la digue sur un profil transversal (figure III.2): du type 1 localisé au-delà du jet de rive des plus fortes tempêtes, présentant une influence négligeable sur les dynamiques de courant et de mobilisation sédimentaire, au type 6 situé au-delà de la zone du déferlement qui présente les perturbations hydrodynamiques les plus fortes. Les types intermédiaires 2 à 5 situés dans la zone du déferlement ou du jet de rive ont des influences croissantes sur les courants côtiers.

Figure III 2:Classification de la localisation des « seawall » selon Weggel (1988) Hi : houle incidente, Hr : houle réfléchie, HWL : Hight Water Level, LWL : Low Water Level

1.2 Les perturbations hydrodynamiques

Peu d'étude a porté sur les perturbations dynamiques générées par la présence d'une digue frontale. Certains travaux ont en effet émis nombre d'hypothèses sur cette thématique, mais peu de mesures in situ ont été effectuées : sitons en laboratoire les travaux de Jones 1975 ; Mc Dougal et al., 1987, Komar et Mc Dougal 1988, et in situ Birkemeier 1980, Mc Donald et Patterson 1985. Plusieurs phénomènes hydrodynamiques liés à la présence d'une digue frontale peuvent être recensés.

L'effet d'épis.

Komar et Mc Dougal (Oregon, 1988) et Mc Dougal, Sturtevant et Komar (1988) ont démontré la possibilité d'une accentuation des courants de retour contre l'ouvrage pouvant agir comme un épi. Les courants de retour bloquent alors le transit vers l'aval dérive et contribuent à accentuer l'érosion sur ce secteur. Cette idée reste purement théorique et n'a jamais réellement été mise en évidence. Enfin l'éventualité d'un transport de sédiments au large par le développement de rip current en fin d'ouvrage a été également proposée (Mc Dougal et al., 1987, Komar et Mc Dougal 1988)

Le phénomène de sapement en aval dérive.

Ce phénomène est lié directement à l'effet d'épis (cf.partie.II). Une zone d'érosion en aval dérive de l'ouvrage se forme en relation avec la présence d'un ouvrage en dur en amont dérive (Dean 1976, Walton et Sesnsabaught 1977, Dean 1987, Griggs and Taits 1988, Morton 1988)

L'augmentation des turbulences dues à la réflexion.

Le rôle des phénomènes de réflexion sur la mobilité des fonds directement au droit d'une digue a été soumis à de nombreuses controverses. Dorland (1940) a mis en avant la possibilité d'une augmentation des turbulences due à l'accentuation des phénomènes réflectifs. Ces mêmes observations ont été dénoncées notamment par Silvester (1977, 1987); Lin et al., (1987). Ces auteurs ont expliqué l'augmentation des pertes sédimentaires, sur un secteur endigué par deux dynamiques : d'une part une mise en suspension des sables en relation avec l'augmentation des turbulences hydrodynamiques par réflexion des vagues incidentes sur l'ouvrage, et d'autre part la prise en charge de ces sédiments en suspension par les courants longitudinaux reportant le stock sableux plus en aval.

Ces constations ont été mises à mal par les travaux (modèle numérique d'un profil transversal) de Mc Dougal et al (1996) qui ont utilisé une version modifiée de SBEACH incluant les phénomènes de réflexion due à une digue et ses influences sur le set up et le déferlement des vagues. Les résultats numériques de cette étude, confirmés par les travaux de Kraus et al (1992) n'ont pas démontré d'augmentation des turbulences dues à l'ouvrage susceptibles de différencier un profil de plage « endigué » d'un profil de plage naturel.

Si l'impact transversal d'une digue frontale a généré de nombreux débats sans réellement donner de conclusions catégoriques, l'impact d'un tel ouvrage sur les dynamiques longitudinales est peu connu.

A ce propos Jones (1975) a été un des premiers à étudier de façon théorique et expérimentale les effets d'une digue sur les dynamiques longitudinales. Il a pu mettre en évidence que les maximums et les minimums de courant étaient en relation avec le développement de vagues stationnaires au droit de la digue. Sylvester (1977) quant à lui a suggéré que la propagation de vagues obliques sur l'ouvrage peut générer un système de vague à « crête courte » provoquant une amplification du transport de matériel.

Parmi le petit nombre de mesures de courant réalisées in situ, les travaux de Birkemeier (1980) sur le Lac Michigan, ont pu démontrer une accentuation des courants longitudinaux devant les sections de plages endiguées. Pareillement Miles et al (2001) sur la côte sud de l'Angleterre ont montré une accentuation des dynamiques longshore devant l'ouvrage, et expliquent que la concentration en sédiment plus importante dans les flux devant l'ouvrage, sont en relation avec les phénomènes réflectifs générant un transport sédimentaire moyen plus important devant la digue. Le même type de résultats a été trouvé par Hee Jun Lee et al (1999) en modèle physique.

Il ressort de cette synthèse biblio que les résultats de certains travaux, essentiellement in situ sont parfois en totale contradiction. L'ensemble des études s'accorde à dire qu'il est nécessaire d'effectuer des mesures de comparaison bathymétriques et courantométriques, devant et en aval dérive des ouvrages sur des secteurs différents. De plus la majorité des études porte sur des environnements macro, ou mesotidaux. Le site que l'on va étudier est quant à lui, en domaine microtidal.

Ce travail vient donc compléter l'ensemble des études précédentes. Il se propose d'étudier l'impact d'une digue frontale, implantée à la fin des années 1970, sur les fonds sableux sur une côte sableuse à barres en domaine microtidal. Son édification est directement liée aux importants problèmes d'érosion côtière et de gestion de la zone littorale de Camargue (Delta du Rhône, France).

2. Présentation du site d'étude

La plaine deltaïque et son littoral actuel, de l'ouest de Piémanson au phare de Beauduc, résultent des apports fluviaux des chenaux de la période moderne de Grand Passon et du Bras de Fer. Ces chenaux particulièrement actifs permettent une progradation deltaïque importante, entre le Moyen Age et la période Moderne (Provansal et al., 2003), d'où résulte encore le caractère avancé du delta dans ce secteur. Le fonctionnement de ces chenaux durant le Petit Age Glaciaire explique probablement en partie le caractère massif des apports sédimentaires dans ce secteur (Provansal et al. 2003). Un lobe sous-marin très important est mis en place à l'aval du système. Toujours très marqué dans la bathymétrie, ce lobe sous-marin provoque la réfraction des houles de sud est (Blanc 1977, Suanez, 1997). L'érosion du lobe à partir, au moins de 1841 (Sabatier et al., 2006), permet dans un premier temps de compenser l'absence des apports fluviaux consécutif à l'avulsion de 1711 vers l'extrémité est du delta, débouché du Grand Rhône. Comme pour les Saintes Maries l'érosion littorale de ce

secteur s'inscrit dans un contexte historique long. Le tarissement des sources sédimentaires marines, suite à l'érosion de la partie sommitale des lobes sous-marins, est probablement en partie à l'origine des accélérations des vitesses de recul du rivage dans ces secteurs (Maillet, thèse 2005).

Le site étudié (figure III.3) montre une plage (D50 = 0.2 mm) à barre de type « Dissipative and Longshore-Bar-Trough » selon Wright and Short (1984), avec un transport net longitudinal dominant dirigé vers l'Ouest.

Figure III 3 : localisation et photographie de la digue

Dans un contexte microtidal (<0.3 m), les tempêtes sont principalement issues du secteur Sud Est à Sud Ouest (Hsig=3.76m, T=9s annuelle, Hsig=6m extrême) et induisent dans le secteur d'étude un transport longhore net d'est en ouest .

Avant la construction de la digue, sous sa configuration actuelle, en 1998 qui s'étend désormais sur 2,7km, la plage, reculait à des vitesses comprises entre -3 et –8 m.an⁻¹ (Sabatier 2001, Suanez 1997) principalement à cause d'une augmentation du gradient du transport longshore, dont la diminution à l'Ouest se traduit par une forte sédimentation (flèche de Beauduc)

Construite en « fond de plage » dans les années 1970 cette digue était destinée, originellement, à contenir les inondations liées aux tempêtes qui mettaient en danger l'exploitation salinière en arrière de la plage. Suite au recul continu du rivage, la situation de la digue est passé progressivement d'un type 1 (Weggel 1988) au début de sa construction, à un type 4 ou 5 à la fin des années 90, la conséquence en a été sa destruction lors d'une tempête cinquantenale en 1997. L'ouvrage est reconstruit au même emplacement, directement en position de rivage (type 4 /5), l'année suivante.

Cette partie qui se propose d'étudier l'interaction entre un ouvrage longitudinal placé en position du rivage et son environnement morphodynamique porte sur deux étapes.

-La première repose sur l'étude des variations morphologiques des fonds, avant et après la construction de l'ouvrage, sous sa configuration actuelle. Elle est basée sur un programme de surveillance bathymétrique et sur la comparaison de profils transversaux réguliers, au droit et de part et d'autre de la digue, s'étendant en mer jusqu'à la profondeur de fermeture.

-La deuxième étape a consisté en des mesures de courants, tant sur le plan longitudinal que transversal, dans la zone du déferlement adjacente à la digue.

CHAPITRE 2 : IMPACT D UNE DIGUE FRONTALE SUR L EROSION DES FONDS

Cette partie a fait l'objet d'un article dont les références sont données un peu plus bas. La version originale se trouve en Annexe 3, et nous présenterons ici une version en français de l'article.

SAMAT, O., SABATIER, F., LAMBERT, A. (2006) - Erosion of the sandy bottom in front of a seawall (Véran site, Gulf of Lions, Mediterranean coast). In: Sanchez-Arcilla, A. (Ed.) - Coastal dynamics 2005. Proceedings of the 5th international conference, April 4-8, 2005, Barcelona, Spain: 1-13. - ASCE. - (CD05).

1. Introduction

L'utilisation des digues pour protéger les côtes et limiter les inondations des tempêtes est une pratique courante en ingénierie côtière. L'impact de ces digues sur l'évolution bathymétrique, lorsqu'elles sont implantées au niveau de la position du rivage ou dans la zone de déferlement demeure encore mal connu. Certains auteurs considèrent en effet qu'une digue n'augmente pas particulièrement l'érosion de la partie sous-marine, sauf une érosion locale en pied d'ouvrage, alors que d'autres, au contraire, soulignent leur rôle négatif lié à une modification de la bathymétrie et/ou une augmentation du transport sédimentaire longshore qui amplifie les processus d'érosion^{1 2}. Quoi qu'il en soit, les relevés de terrain autour des digues sont peu nombreux ce qui rend difficile toute généralisation sur l'efficacité et l'impact des digues sur les plages. Les analyses les plus approfondies ne sont basées que sur des profils topographiques ne couvrant pas la zone de déferlement et concernent essentiellement des plages méso tidales sans barres (Tait and Griggs, 1990 ; Griggs et al., 1994 ; Basco et al., 1997).

Suite aux importants problèmes d'érosion côtière et de gestion de la zone littorale de Camargue, ce travail présente les résultats d'un programme de surveillance bathymétrique au droit d'une digue sur une côte sableuse à barres en domaine micro tidal. L'objectif étant d'apporter des éléments nouveaux sur les phénomènes d'érosion liés à la présence de l'ouvrage. L'étude de l'évolution récente (2000-2004) du secteur est comparée à l'évolution des fonds avant la construction de l'ouvrage dans son état actuel en 1998.

Afin d'apporter des réponses concrètes aux questions traditionnellement posées par l'implantation de digues sur un littoral sableux, nous reprendrons sous formes d'interrogations les points développés par Dean (1987) et Basco (2004) sur les effets possibles de tels ouvrages. Est-ce que la digue :

- 1. accélère l'érosion sous marine du profil?
- 2. augmente l'affouillement en pied d'ouvrages ?
- 3. modifie la morphodynamique des barres ?
- 4. perturbe le profil vers le large (phénomène de réflexion)?
- 5. retarde le processus de reconstruction de la plage?

2. Presentation du site

Le site étudié se localise sur le littoral du Delta du Rhône (Mer Méditerranée, France). La plage (D50 = 0.2 mm) montre une côte à barre de type « Dissipatif and Longshore-Bar-Trough » selon Wright and Short (1984), avec un transport net longitudinal dominant dirigé vers l'Ouest (fig 1). Dans un contexte micortidal (<0.3 m), les tempêtes sont issues du secteur SE (Hsig=3m, T=7s annual, Hsig=6m extrem) et induisent dans le secteur d'étude un transport longhore net d'est en ouest .

Avant la construction en 1998 de la digue qui s'étend désormais sur 2,7km, la plage, reculait à des vitesses comprises entre -3 et -8 m.an^{-1} (Sabatier et Suanez 2003) principalement à cause d'une augmentation du gradient du transport longshore (Sabatier 2001), dont la diminution à l'Ouest se traduit par une forte sédimentation (flèche de Beauduc). En réalité, la digue présente depuis 1998, pouvait être considérée comme une digue de haut de plage avant cette date car une plage, en recul naturel, séparait le rivage de la digue. Construite dans les années 1970 cette digue était destinée originellement à contenir les inondations liées aux tempêtes. En effet, ces inondations mettaient en danger l'industrie salinière qui utilise des salines en arrière de la plage. Suite au recul continu de la plage et à une tempête cinquantenale en 1997, la digue est complètement détruite puis reconstruite l'année suivante au même emplacement, sous la forme d'une digue (figure.III.5).

Figure III 4: localisation et suivis du site

Figure III 5: evolution historique de la digue

3. Méthodes

Pour déterminer l'impact de la digue sur l'évolution des profils bathymétriques, nous mesurons 6 lignes de profils depuis septembre 2000, à raison de quatre relevés saisonniers par an (figure III.4). Quatre lignes sont situées devant l'ouvrage et deux lignes de part et d'autre de celui-ci. Ces deux dernières sont censées représenter des profils « naturels » de comparaison avec celles au droit de la digue. Les profils, réalisés au moyen d'un sondeur (erreur en Z +/- 0,3 m) et d'un GPS différentiel embarqué sur un bateau pneumatique, s'étendent sur une distance de 1500m environ vers le large pour atteindre -10 m de profondeur. Tous les profils sont recalés par rapport au NGF à partir des données marégraphiques du jour, enregistrée à moins de trois kilomètres du site. Entre 1988 et 1999, des profils bathymétriques annuels ont été réalisés sur les lignes G14, G15 et G16, mais ces relevés ne s'étendent que sur 500 m vers le large, soit des profondeur de -4 m environ. De fait, la 2nd barre n'est pas systématiquement mesurée dans sa globalité. Ces trois lignes de profils nous serviront à comparer l'évolution des fonds avant et après le seawall. Les profils bathymétiques sont utilisés pour calculer des bilans sédimentaires, le déplacement moyen des barres d'avant côte, la profondeur de fermeture, et évaluer l'affouillement au pied de l'ouvrage.

4. Résultats

4.1. Question 1: y a t-il accélération de l'érosion au droit de l'ouvrage?

Afin de déterminer si le seawall augmente les processus d'érosion, nous avons comparé les bilans sédimentaires des profils avant (1988-1998) et après (1998-2004) la mise en place de l'ouvrage. Les profils entre 1988 et 1999 étant moins étendue en mer que ceux réalisés à partir de 2000, la comparaison des profils est effectuée sur la partie commune aux deux périodes (entre le rivage et la fin de la 2^{nd} barre).

En terme de bilans sédimentaires moyens annuels le secteur est déficitaire mais jusqu'en 1998 il n'y a pas de différences significatives entre les profils (reconstruction de la digue). Entre 1998 et 2004, le bilan sédimentaire est toujours déficitaire mais les profils au milieu et à l'ouest de la digue affichent une érosion plus importante et indiquent une organisation longshore de l'érosion, dans le sens de la dérive littorale dominante (fig.3). Le profil le plus à l'Est (GI14) accuse un déficit d'environ $0.3 \text{ m}^3/\text{m}$ soit $40\text{m}^3.\text{an}^{-1}$ Le déficit s'accélère ensuite d'Est en Ouest le long de l'ouvrage pour atteindre en GI18, la valeur maximale, de près de 1.2 m³/m (250 m³.an⁻¹). Ce déficit diminue ensuite vers l'Ouest mais reste important avec en

GI17 une érosion de l'ordre de $0.8 \text{ m}^3/\text{m}$ (200 m³.an⁻¹). Finalement le volume global de sable perdu extrapolé à l'ensemble du secteur compris entre GI14 et GI17 s'élève à -545 000 m³.an⁻¹. La variation des valeurs indique une accentuation de la variabilité des bilans sédimentaires sur les profils au droit de la digue (fig.3). Finalement ces résultats montrent une augmentation de l'érosion des profils après la construction de la digue mais aussi une érosion plus forte devant le seawall. Enfin, il semble que l'érosion soit croissante dans le sens du transit longshore.

Figure III 6: bilans sédimentaires (en gris: la localisation de la digue)

4.2 Question 2: y a t il augmentation de l'afouillement en pied d'ouvrage?

Les profils bathymétriques indiquent tous la présence d'un approfondissement au pied de digue. Cependant, cet approfondissement correspond à la fosse interne entre le rivage et la barre interne sur les profils naturels. Il convient donc d'analyser si cet approfondissement est influencé par l'ouvrage où s'il correspond à la morphologie naturelle du profil. Cette question a déjà était débattue par plusieurs auteurs (Sexton et Moslow, 1981 ; Kriebel et al.,1986) mais reste aujourd'hui l'objet de plusieurs controverses (Basco, 2004)

Nous avons donc analysé la profondeur de la fosse interne depuis 1988 afin de déterminer si l'impact de la digue augmente sa profondeur par affouillement (fig.III;7). Les profils de part et d'autre de l'ouvrage présentent une évolution de leur fosse interne

relativement régulière et homogène depuis 1988 avec une légère tendance à l'approfondissement. En revanche sur les profils au droit de l'ouvrage (GI15', GI16, GI17), un creusement important apparaît après 1998, avec des valeurs comprises entre -1 et -2m, entre 1988 et 1997, et des valeurs proches de -4 à -5m en 2004. Dans le détail, la fosse interne du profil GI15, pourtant en face de la digue ne montre pas d'évolution particulière. Ici encore, on suppose une organisation longshore de l'influence de la digue car ce profil qui se situe à l'est, en amont du transit longshore dominant, ne semble pas perturbé par le seawall. Finalement l'augmentation de la profondeur de la fosse interne devant le seawall est interprétée comme un affouillement directement lié à la présence de l'ouvrage.

Figure III 7: variation de la profondeur de la fosse interne depuis 1988

4.3 Question 3: y a t-il modification de la morphodynamique des barres?

Sur ce point certains auteurs expliquent l'origine de morphologies sous marine de type ondulatoires par la présence de phénomènes réflectifs importants (Krauss, 1988, Barnet et al., 1988), d'autres montrent des migrations des barres d'avant côte tantôt vers le rivage (Morton 1988) tantôt vers le large (Barnet et al., 1988). Nous avons donc évalué le bilan sédimentaire moyen des barres et leur déplacement entre 2000 et 2004. Une comparaison avec les profils antérieurs n'était pas possible du fait des relevés inadaptés entre 1988 et 1998.

La morphologie des profils bathymétriques évolue longitudinalement. Elle passe de deux barres relativement bien individualisées à l'Est (GI14, GI15), à trois barres au droit (GI18 et GI16) et à l'Ouest de la digue (GI17). Le bilan sédimentaire des deux premières barres (b1 et b2) évolue de façon similaire (fig.III.8). On observe une perte principalement sur la partie Ouest de la digue ainsi que sur la partie médiane et un gain pour la partie Est (GI15 et GI14).

Figure III 8: Evolution du bilan sédimentaire des barres

Figure III 9: Migration des barres

Sur tous les profils, la barre 2 montre les plus forts taux d'érosion. Le bilan sédimentaire des deux premières barres affiche aussi une tendance à l'érosion dans le sens de la dérive littorale dominante. La troisième barre (b3) en GI17 et GI18 montre également des pertes importantes où elles dépassent celles de la barre 2 en GI17 (fig III.8). La mobilité transversale des deux premières barres (b1 et b2) montre un déplacement similaire avec un recul généralisé de l'ensemble du système, accentué sur la barre 2 (sauf en GI17, fig III.9). Les reculs les plus importants atteignent 45m.an⁻¹en moyenne. La barre interne (b1), la plus proche de la digue, recule moins que la barre 2 qui est la seule à montrer une évolution spatiale Est-Ouest.

Finalement, le recul des barres et surtout de la barre externe se traduit par un élargissement de la zone du déferlement qui s'amplifie dans le sens de la dérive dominante et surtout au droit

de la digue. Le profil « naturel » GI17 montre une migration importante de la barre interne vers la côte en relation avec un recul du rivage tandis que les barres 2 et 3 migrent aussi vers le large. Ces mouvements sont très souvent mis en évidence dans la littérature sur des plages naturelles, mais ici, il est possible qu les barres migrent plus rapidement devant l'ouvrage.

4.4 Question 4: perturbation du profil vers le large?

Une critique majeure formulée à l'encontre des seawall concerne l'influence offshore qu'auraient ces derniers en relation directe avec une augmentation de la réflexion contre l'ouvrage qui entrainerait les sédiments vers le large. Pour analyser ce phénomène, nous avons déterminé la closure depth et la largeur de la « zone active » du profil défini comme la distance entre le rivage et la closure depth. En effet, on peut considérer que ces deux paramètres sont significatifs de la zone active du profil dont nous cherchons à évaluer les éventuelles perturbations causées par le seawall.

L'extension de la « zone active » du profil, s'étend sur 400m en GI14, puis augmente significativement d'Est en Ouest sur les profils devant l'ouvrage pour atteindre 1000m en GI18 (fig.III.10). La zone active diminue ensuite vers l'ouest en GI17. La profondeur de fermeture qui varie de -5 à -8 montre logiquement la même tendance. Finalement, la profondeur de fermeture se situe beaucoup plus loin en mer sur les profils au droit de la digue que sur les profils dits « naturels » ce qui témoigne indirectement d'une influence offshore de la digue sur le profil de plage avec une organisation longshore d'est en ouest.

4.5 Question 5: retardement de la reconstruction de la plage?

La question de la reconstruction de la plage en période de beau temps est une question souvent débattue dans la littérature. Certains auteurs montrent qu'il n'y a pas forcément de ralentissement de la reconstruction de la plage (Barnet et al., 1988 ; Dean, 1992 ; Griggs et Tait, 1988; Wiegel, 2002), tandis que d'autres montrent qu'il peut y avoir des variations saisonnières temporairement accentuées devant l'ouvrage (Jones et Basco, 1997) et que l'intensité de la reconstruction est fonction de la largeur de la plage (Krauss, 1988). Cependant dans la majorité des études il s'agit de secteur où le seawall occupe une position de haut de plage ce qui ne permet pas de comparaison directes avec notre site d'étude. L'objectif est donc, ici, de savoir si la présence du seawall réduit ou non les processus de reconstruction en période de beau temps.

Deux périodes ont été retenues comme représentatives: février à avril 2002 et janvier à août 2004 (fig. III.11). Nos résultats montrent que sur les lignes en marge ou en tout début d'ouvrage les bilans sédimentaires sont en majorité positifs ou exceptionnellement négatifs (janvier-août 2004 en GI17). En revanche, sur les profils directement au droit de la digue, la reconstruction est inexistante et les bilans sédimentaires sont à chaque fois déficitaires. Finalement le seawall réduit effectivement la reconstitution de la plage mais à des degrés divers selon les périodes et les profils.

Figure III 11: intensité du processus de reconstruction de la plage par profil.

5. Discussion

Les résultats témoignent finalement que le seawall augmente l'érosion sousmarine.. Cette érosion est observé par l'augmentation des pertes sédimentaires, un approfondissement de la fosse interne au pied de l'ouvrage, un ralentissement, voire l'absence des processus de reconstruction et un approfondissement de la profondeur de fermeture devant la digue. L'augmentation des vitesses de migration vers le large de la barre externe accompagnée d'une diminution de volumes liée à la présence de l'ouvrage est suggérée. L'ensemble de ces données confirme les résultats de travaux antérieurs (Barnett et al 1988, Morton 1988) sur des plages meso et macro-tidales aux conditions de houles plus énergétiques. Cette évolution est très probablement causée par une augmentation des turbulences dues aux dynamiques réflectives liées à la présence de la digue. L'augmentation des vitesses de migration des barres externes vers le large ne peut être catégoriquement attribuée à la présence de la digue car ce phénomène s'observe aussi sur des côtes dépourvues d'ouvrages (Ruessink et Kroon 1995), notamment sur les plages méditerranéennes du Golfe du Lion (Sabatier et Provansal 2000, Certain 2002). Néanmoins l'influence de la digue se fait très probablement ressentir à travers toute la zone du déferlement et probablement à des profondeurs supérieures comme le montre l'analyse réalisée sur la profondeur de fermeture.

Nos résultats montrent aussi une augmentation de l'érosion dans le sens du transit dominant, en accord avec les travaux de Sabatier (2001) qui expliquent l'érosion dans ce secteur par une augmentation du transport longshore. L'organisation longshore des phénomènes d'érosion était relativement peu étudiée jusqu'alors, les travaux antérieurs se concentrant surtout sur l'évolution cross-shore des profils. Nos travaux sont en accord avec les mesures de courantologie in-situ de Miles et al (2001), qui montrent aussi une augmentation longitudinale de l'érosion le long d'un seawall. Le profil « naturel » GI17, en aval dérive, subit probablement l'influence de la digue dont les effets longshore ont été démontrés en tout cas au niveau de la bathymétrie.

6. Conclusion

Nos résultats et interprétations vont à l'encontre de certains travaux (Jones et Basco 1997, Wiegel 2002) qui admettent que la morphologie des fonds au droit et autour des seawall n'est pas fondamentalement différente. Au contraire nous montrons l'impact négatif des seawall sur la bathymétrie environnante remettant en question à terme la stabilité de l'ouvrage. Cependant les réponses morphologiques et hydrodynamiques à l'implantation d'un seawall dépendent largement des conditions locales : position de la digue sur le profil (Rakha et Kamphuis 1997), tendance érosive à long terme, et type de structures (Plant et Griggs 1992) . Nous soulignons de ce fait les difficultés de compréhension des phénomènes d'érosion devant un seawall dès lors qu'on s'intéresse à des cas d'étude et la difficulté à généraliser l'impact d'un tel ouvrage sur la bathymétrie. Aussi nous soulignons que l'analyse de l'impact d'un seawall doit se faire transversalement mais aussi longitudinalement. Une campagne de mesures insitu courantologique permettrait d'amener des éléments de réponses plus concrets sur ce phénomène.

CHAPITRE 3: COURANTOLOGIE DE LA ZONE DU DEFERLEMENT LIEE A UNE DIGUE FRONTALE

L'analyse morphologique a révélé une variabilité et une dynamique sédimentaire importante au droit de la digue.

En s'appuyant sur ces travaux, une campagne de courantométrie, effectuée en collaboration avec le LSEET LEPI-(Université du sud Toulon-Var), a été réalisée au droit et en aval dérive de la digue en novembre/décembre 2005, afin d'évaluer les perturbations éventuelles induites par l'ouvrage, sur le plan transversal et longitudinal.

L'étude s'appuiera bien évidemment sur la question de l'influence de la digue sur les dynamiques marines et sur la mobilisation sédimentaire potentielle sur le secteur. Les résultats devront permettre d'expliquer les tendances issues de l'analyse morphologique. Rappelons que la digue est positionnée sur la ligne de rivage, les perturbations générées par l'ouvrage affectent, essentiellement la zone du déferlement (Weggel 1988).

1. Méthode

Afin de mener à bien cette étude, et affiner notre protocole expérimental, nous avons tenu compte, sur la période d'étude considérée, en complément des mesures courantologiques, des caractéristiques de vent, de marée et de certains pré-requis concernant les données hydrodynamiques qui seront traitées dans ce chapitre.

1.1 Les caractéristiques du vent et de la marée pendant la campagne de mesure

1.1.2 Le vent

Les données de vent sont issues des relevés de météo France enregistrés toutes les trois heures aux Saintes Maries de la Mer. Ces données représentent en fait une moyenne sur les dix dernières minutes de chaque heure. C'est-à-dire que les caractéristiques de vents relevées à 14h sont représentatives de la tendance entre 13h50 et 14h.

1.1.3 La marée

Si l'influence de ce paramètre sur les dynamiques marines et le transport sédimentaire (dans le golfe du Lion) est relativement modeste par rapport aux plages tidales, elle reste cependant une donnée intéressante dans la mesure où le niveau moyen de la surface conditionne le niveau d'attaque des vagues. Aussi une élévation du niveau de l'eau peut générer, sur une pente plus forte (de type digue), une augmentation des phénomènes réflectifs, potentiellement générateurs d'une agitation, et d'une mobilisation sédimentaire plus importante.

En raison d'un manque de données au marégraphe du Grau de la Dent pendant la période d'investigation, nous avons choisi d'utiliser les données du marégraphe d'Endoume à Marseille.

1.2 Les courantomètres utilisés

Différents types d'appareils ont été utilisés pour les mesures de houle et de courants. 2 profileurs de courant ADCP, 1 S4 ADW, et 1 ADV (figure III.14).

Figure III 12: Appareillage utilisé pour mesurer le courant

1.2.1 Les ADCP (Accoustic Doppler Current Profiler)

Le profileur de courant ADCP (*Accoustic Doppler Current Profiler*) est un appareil qui permet la mesure des courants sur une verticale. Nous présenterons tout d'abord le principe général de l'ADCP puis celui spécifique au modèle utilisé, fabriqué par R D Instruments (figure III.15)

Ce type de profileur de courant utilise l'effet Doppler, le principe est le suivant.

Dans un premier temps un transducteur émet, suivant un axe horizontal, un court train d'ondes de fréquence F appelé « ping ». Aussitôt après ce même transducteur écoute l'écho qui lui revient. Cet écho est dû à la réflexion de l'onde émise par des particules en suspension dans l'eau. Imaginons une particule assez importante pour renvoyer une partie du signal. Si cette particule est immobile, le signal reçu par le transducteur aura la même fréquence que celui qui a été émis. En revanche, si un courant marin éloigne la particule, la fréquence qu'elle reçoit (qu'elle entend) est affectée du décalage Doppler. Mais comme la distance entre la particule qui réfléchit le signal et le transducteur augmente aussi, le signal de retour est affecté à nouveau d'un même décalage. Par rapport à la fréquence émise, la fréquence retournée au transducteur est donc doublement décalée.

Il suffit donc, dans le plan horizontal, de mesurer ce décalage Δ F2 suivant 2 axes normaux pour connaître la composante horizontale du courant.

Principe de mesure des profileurs de courant par effet Doppler (RDInstrument):

Du temps t-1 à t0, le profileur émet simultanément un ping sur ses quatre transducteurs. Ceux-ci sont inclinés afin d'émettre 4 faisceaux sonores inclinés de 30 degrés par rapport à la verticale. Ensuite, le profileur écoute le signal écho.

Plaçons-nous dans le plan vertical x0z qui passe par le centre de deux transducteurs opposés. Entre les temps ti et ti+1, ces transducteurs reçoivent un signal affecté d'un décalage Doppler qui lui permet de connaître la composante Vmxn de la vitesse horizontale du courant. Ce qui donne comme module de la vitesse horizontale suivant 0x : Vxi=2Vmxi.

Cette mesure est faite à une distance moyenne oblique"di" du transducteur

$$di = \frac{t_{i+1} - t_i}{4} U$$

où U est la célérité du son (L'ADCP calcule la célérité du son à partir de la salinité, température et pression)

Soit à une distance verticale suivant 0z de

$$zi = \frac{\sqrt{3}}{2}di$$

Dans ce même plan un inclinomètre permet de corriger cette valeur afin de fournir celle qu'aurait donnée l'appareil s'il avait été parfaitement vertical.

Si les vitesses horizontales déduites des mesures provenant d'une même paire de transducteurs ne sont pas identiques il est possible de calculer une valeur de la composante verticale du courant.

Une autre valeur de cette composante verticale est fournie par l'autre paire de transducteurs. L'erreur sur l'estimation de la vitesse horizontale est calculée à partir de la différence entre ces deux vitesses verticales. Sa valeur permet de retenir ou rejeter la mesure.

Cette autre paire fournit aussi la vitesse horizontale Vyi suivant 0y. A chacune de ces composantes horizontales et suivant le même axe est associée la valeur du champ magnétique fourni par un magnétomètre. Un calcul vectoriel permet d'obtenir les composantes nord-sud et est-ouest du courant. Comme une seule mesure de la vitesse présente une incertitude, l'appareil fait un ensemble de mesure, en fait la moyenne et l'enregistre.

Il en va de même pour les n vitesses mesurées sur la verticale ($n \le 128$).

Figure III 13: Schéma et photo d'installation d'un ADCP sur un fond sableux

Après chaque ping, les transducteurs continuent à résonner pendant un temps d'environ t1-t0 ce qui fait qu'il n'est pas possible d'obtenir de mesure à proximité de l'appareil. Les transducteurs sont directifs, une faible énergie est cependant émise dans les autres directions notamment suivant l'axe vertical 0z de l'ADCP. Si le ping est réfléchi par le fond, le signal de retour est assez fort pour masquer celui des courants proches du fond. Dans une couche d'une hauteur de 15 % de la distance entre l'ADCP et le fond le courant n'est pas mesurable. Il en est de même si l'appareil regarde vers le haut et qu'un écho important est produit par la surface.

L'ADCP utilisé dispose également d'un capteur de pression, qui lui, permet de mesurer à tout instant la hauteur au dessus de lui, on en déduit donc les hauteurs de houle et la

profondeur exacte de l'appareil (Programmation pour la houle : burst de 20mn toute les heures). Le traitement de la houle par l'utilitaire se fait à partir de l'enregistrement des données sur 3 cellules réparties de façon homogène sur la colonne d'eau.

Les données enregistrées par l'ADCP sont acsquises en continu sur toute la période à une fréquence de deux enregistrements par minute sur toute la colonne d'eau. Les appareils sont positionnés de façon à mettre en évidence un gradient de courant long shore dans la deuxième fosse. Il était primordial d'utiliser des appareils de mesures identiques pour obtenir une comparaison fiable des données.

1.2.2 L'ADV (Accoustic Doppler Velocimeter)

Le principe de fonctionnement de l'ADV est le même que celui de l'ADCP, une onde acoustique est émise, l'appareil traite la différence de fréquence sur l'onde retour pour en déduire la vitesse des particules de fluide. A l'inverse d'un profileur de courant à effet doppler standard, l'ADV utilise trois récepteurs différenciés pour un unique émetteur. La figure montre comment les faisceaux mesurent à 157 mm de l'émetteur et comment à partir de trois récepteurs focalisés sur le même volume, on obtient trois composantes de vitesse (figure III.16).

L'ADV mesure les composantes de vitesse parallèles à ses trois faisceaux et reporte ces données en trois composantes ENU, East North et Up. Pour obtenir les composantes ENU, l'instrument convertit les données mesurées en coordonnées XYZ. Les coordonnées XYZ sont liées à la sonde et sont indépendantes de l'orientation verticale de l'appareil (tête en bas ou en haut).

L'ADV Permet de mesurer également à partir d'un capteur de pression la hauteur la période et la direction des vagues (PUV) en utilisant les trois composantes de la vitesse (Verticale, Nord Sud et Est Ouest) et P la pression.

Son mode d'enregistrement est également différent de celui de l'ADCP: toutes les heures, l'appareil réalise une mesure à quelques centimètres au dessus de sa tête d'enregistrement à une fréquence de 2 Hz pendant 20 minutes. Ces périodes d'enregistrement sont appelés « burst ». Ne connaissant pas à l'avance les conditions dynamiques que nous aurions pu rencontrer durant la campagne de mesure, nous avons volontairement choisi d'optimiser l'acquisition pour les vitesses s'échelonnant jusqu'à 0.3m.s⁻¹ (option de programmation).

Figure III 14: Schéma et photo d'installation de l'ADV

Le mode de mesure de cet appareil permet de réaliser des analyses fréquentielles et d'avoir des données très précises sur des périodes assez courtes, mais en un seul point de la colonne d'eau. Ces données complètent donc les données de l'ADCP.

Durant cette campagne de mesure, l'ADV a été positionné, la tête d'enregistrement était située à 1,40 m au dessus du fond ce qui correspond à la deuxième cellule de l'ADCP. La comparaison des résultats obtenus permet un calage précis des appareils.

Les données fournies permettent de tirer des conclusions sur les capacités de réflexion de la digue et sur l'influence que peut avoir cette réflexion sur le transport sédimentaire.

1.2.3 Le courantomètre houlographe S4 ADW

Le S4 ADW est destiné à mesurer la direction et l'intensité réelle des dynamiques horizontales de courant ainsi que la houle. C'est un courantomètre électromagnétique calibré pour des profondeurs allant de 0 à 70m, il est particulièrement intéressant pour obtenir des données directionnelles de la houle en combinant mesure de pression et de la cinématique des particules dans deux directions à haute fréquence (2Hz). Il comporte à la fois un capteur de pression et un courantomètre électromagnétique. Son fonctionnement est différent des deux autres appareils : c'est un courantomètre électromagnétique qui mesure la tension résultant d'un conducteur en mouvement (ici l'eau), proportionnel à l'intensité de la vitesse de l'eau au niveau des capteurs, à travers un champ magnétique (généré pas le courantomètre). Lorsqu'un

courant se déplace dans le champ magnétique généré au sein du capteur il induit une force électromotrice directement proportionnelle à la vitesse du courant et perpendiculaire à la fois au champ magnétique et à la direction du courant.

Les données recueillies permettent de calculer des vitesses orbitales de la houle (échantillonnage à 2 Hz) et l'énergie en fonction de la fréquence

Les mêmes données peuvent être traitées pour obtenir une description complète du champ de courant avec une précision de l'ordre de 1-2 mm/s.

Equipé d'un compas interne ils permettent le référencement de la direction du courant par rapport au Nord Magnétique.

Son mode d'acquisition est semblable à celui de l'ADV, un burst de 20 minutes toutes les heures.

1.3 Positionnement des appareils

La campagne de mesure a été définie en fonction de la période durant laquelle les évènements météo marins sont potentiellement les plus morphogènes. Les appareils au nombre de quatre, ont donc été immergés entre le 21 novembre et le 10 décembre 2005, devant et en aval dérive de la digue en fonction des dynamiques à mettre en évidence (longitudinales et transversales).

Les ADCP (600KHz), ne sont pas adapté pour un fonctionnement dans les petits fonds (zone de blanking importante). Ils imposent ainsi de tronquer une partie relativement importante des mesures dans la basse colonne d'eau et n'ont donc pas pu être positionné dans la première fosse de lévigation (~-3m) proche de la digue. De plus afin d'obtenir des résultats comparables nous avons choisi, d'immerger ces appareils au sein d'unités morphologiques comparables. Or en 2005 la fosse de lévigation étant peu marquée en GI17, le positionnement s'est donc fait en se basant sur les profils antérieurs (2004). Les deux ADCP ont ainsi été placés à respectivement 275 et 330m du rivage dans la deuxième fosse sur deux profils consécutifs espacés de 2km (figure III.17). Le premier a été immergé au droit de la digue (GI16) et l'autre en aval dérive (GI17).

Cette disposition a pour but de mettre en évidence, à partir des enregistrements ADCP sur une longue période à des fréquences basses, les irrégularités éventuelles des dynamiques long shore par comparaison des valeurs sur deux appareils au fonctionnement et à la programmation identique. Sur la même unité morphologique, en GI16, a été positionné l'ADV à environ 1.80m et en décalé de la tête de l'ADCP, afin d'éviter de perturber la champ
de mesure de l'appareil. Enfin un S4 a été placé sur ce même profil, à un peu moins de 100 m du pied de la digue frontale dans la première fosse (figure III.17). Cette disposition a pour but d'une part d'appréhender les phénomènes cross shore (S4 et ADV) sur un profil transversal au droit de la digue, et d'autre part d'effectuer une comparaison des mesures obtenues sur 2 appareils différents placés dans la même unité morphologique (ADCP et ADV).

Figure III 15: localisation des appareils de mesure du courant et de la houle sur le site d'étude

Pour caractériser les phénomènes cross shore, et caractériser les ondes incidentes et réfléchies (amplitude, période, direction) on a choisit des appareils qui ont une fréquence d'enregistrement plus importante (ici 2 Hz). La période d'enregistrement est suffisamment inférieure à la période de la houle (de l'ordre de plusieurs secondes).

1.4 Récapitulatif des enregistrements

Les périodes d'enregistrement pour chaque appareil montrent que les données ne sont exploitables que du 23 novembre au 7 décembre pour les ADCP du 23 novembre au 1 décembre pour le S4 et du 23 novembre au 5 décembre pour l'ADV (Tableau III.1).

Dates	S4 ADW (Porfil à digue GI16)	ADV (Profil à digue GI16)	ADCP (Profil à Digue, GI16)	ADCP (Profil Naturel GI17)
21-nov-05				
22-nov-05				
23-nov-05				
24-nov-05				
25-nov-05				
26-nov-05				
27-nov-05				
28-nov-05				
29-nov-05				
30-nov-05				
01-déc-05				
02-déc-05				
03-déc-05				
04-déc-05				
05-déc-05				
06-déc-05				
07-déc-05				
08-déc-05				
09-déc-05				
10-déc-05				
11-déc-05				
12-déc-05				
		Signal perturbé		
		Données exploi		

Tableau III 1: Enregistrements effectifs des appareils durant la campagne

1.5 Pré-requis et validation des mesures des appareils

La quantité très importante de données, la différence de mode d'enregistrement, de traitement et de positionnement des appareils, imposent de définir certains pré requis (valeurs seuils) communs tels que l'identification et la définition des cellules représentatives de la colonne d'eau sur les deux ADCP. Enfin, à titre méthodologique, nous définirons les différences d'enregistrements associées aux mesures ADCP en terme de courant et de houle.

Ce travail repose principalement sur la comparaison des résultats obtenus par l'ADV (mesure ponctuelle) et par l'ADCP (mesure par cellule) pour une même hauteur dans la colonne d'eau.

En terme de dynamiques il est intéressant également de définir de façon théorique la profondeur au déferlement associée à chaque évènement météo marin. Cet élément est essentiel pour définir si les courants et les houles mesurés notamment par les ADCP sont générés dans un contexte de houles déferlantes ou non déferlantes. Nous devons aussi considérer que nous allons être amenés à travailler sur des vitesses de courant et plus précisément sur la capacité d'un flux à façonner les fonds. Aussi il est important de définir un seuil de vitesse pour lequel le transport sédimentaire est effectif : nous calculerons donc sur le site d'étude la valeur seuil d'entraînement des sédiments (paramètre de Shield). Nous verrons enfin, la méthode retenue pour évaluer les coefficients de réflexion sur notre site d'étude et nous présenterons la méthode statistique utilisée pour la synthèse des dynamiques étudiées dans ce chapitre.

1.5.1 Identification des cellules

Il faut rappeler dans un premier temps que les deux ADCP sont positionnés à des profondeurs différentes, et qu'il devient difficile dans ce cas là, de comparer des valeurs de courant sur des colonnes de hauteurs différentes. Il est donc nécessaire de définir exactement les profondeurs de cellules comparables. Deux possibilités s'offraient à nous (Figure III.18) : -Soit, nous comparions les résultats de cellules situées à la même distance par rapport au fond. Nous aurions alors aligné la cellule 6 de l'ADCP en GI17 à la cellule 6 en GI16. Cette solution présentait l'inconvénient d'utiliser une cellule trop proche de la surface en GI17 (-0.7m).

-Soit, nous comparions les valeurs sur des cellules présentant le même éloignement par rapport à la surface. La cellule 7 en GI17 correspondrait à la cellule 13 en GI16. Cependant, étant donné les profondeurs d'immersion différentes des deux appareils, les mesures alors effectuées sur les deux cellules choisies ne présenteraient pas la même influence vis-à-vis du fond.

Notre objectif consistant à mettre en évidence l'influence des déformations de la surface libre sur un profil vertical de courant, nous avons donc choisi de considérer la surface comme référence pour la détermination des cellules comparables. La figure III.18 permet également de positionner l'ADV en cellule 2 par rapport à l'ADCP en GI16.

Figure III 16: identification des cellules correspondantes sur trois appareils (ADCP et ADV)

1.5.2 Le paramètre γ pour définir la hauteur au déferlement

La zone du déferlement correspond à la zone où l'énergie des vagues est dissipée, grâce au déferlement de la houle. La connaissance de l'évolution de la hauteur des vagues dans cette unité est un préalable indispensable à la connaissance de l'hydrodynamique dans la zone du déferlement. En connaissant l'évolution de la hauteur des vagues en zone du déferlement, nous pouvons appréhender le phénomène de dissipation d'énergie liée au déferlement des vagues, mais également, estimer les variations du niveau moyen du plan d'eau et la circulation dans cette zone.

Sur cette thématique la première idée avait été de considérer l'existence d'une relation linéaire (Mc Cowan, 1891) entre la hauteur des vagues et la profondeur d'eau locale. Cette relation représentée par le paramètre adimensionné γ défini comme le rapport entre la hauteur des vagues H et la profondeur d'eau locale d ;

$\gamma = H/d$

Ce rapport a longtemps été considéré comme constant dans la zone du surf et égal à sa valeur au point de déferlement. Ainsi la valeur 0.78 établie par Mc Cowan (1891) pour une houle monochromatique sur une plage linéaire a longtemps été utilisée.

De nombreux travaux expérimentaux ont par la suite réévalué ce paramètre, Horikawa et Kuo (1966) indiquent que sa valeur décroit de 0.8 au point de déferlement à une valeur de 0.5 stabilisée en zone de déferlement interne. Par la suite les travaux en laboratoire de Stive (1984) et Svendsen (1984) ont permis de mettre en évidence que cette valeur, progressivement décroissante en zone du déferlement, ré augmentait jusqu'à la ligne d'eau. Enfin les travaux de Raubenheimer et al., (1996) ont permis, à partir de mesures in situ, de défnir γ comme non constant dans la zone du surf interne. Dernièrement les travaux de Sénéchal et al., (2004) s'appuyant sur des données hydrodynamiques de deux campagnes de mesures (côte Girondine) ont effectivement démontré une croissance de la valeur de γ avec la diminution de la profondeur dans la zone de surf interne. Les auteurs proposent en effet sur les plages à barres une valeur γ croissant avec la diminution de la profondeur (figure III.19)

En Camargue, Sabatier (2001) a investigué le paramètre γ dans des conditions de faible énergie sur un profil à double barre. Il montre que si la valeur de 0.78 est proche de la moyenne des observations, il existe des variations allant de 0.5 à 0.94. Toutefois, en l'absence d'autres mesures de houle sur le profil, Sabatier (2001) ne peut conclure sur une variation de γ sur le profil.

Il est effectivement important dans notre cas de déterminer la profondeur au déferlement car la littérature propose une distinction entre les dynamiques induites par le déferlement (vitesses du courant) et celles induites par la propagation de la houle (vitesses orbitales). L'intérêt est pour nous de déterminer si un déferlement a pu se produire au dessus des barres d'avant côte. Nous étudierons donc le rapport Hs/d au niveau de chaque barre pour déterminer ces conditions (tableau III.2).

Figure III 17: Evolution du rapport γ en fonction de la profondeur dans la zone du surf interne (Senechal et al., 2004)

	profondeur	$\gamma_{(min)}$ Sénéchal et al (2004)	$\gamma_{(max)}$ Sénéchal et al (2004)	Hb _(min)	Hb _(max)
Barre 1 GI16	1.9	0.6	0.75	1.14	1.425
Barre 2 GI16	4.2	0.4	0.45	1.68	1.89
Barre 1 GI17	0.9	0.7	1.1	0.63	0.99
Barre 2 GI17	2.7	0.4	0.6	1.08	1.62
Barre 3 GI17	4.3	0.4	0.45	1.72	1.935

Tableau III 2:Détermination de Hb en fonction de γ et de la profondeur. (Les unités en grisé concernent les barres d'avant côte des sections morphologiques équipées de courantomètres).

Nous avons donc estimé la hauteur des houles déferlantes théoriques minimales et maximales $(Hb_{(min)} \text{ et } Hb_{(max)})$ en fonction d'une valeur minimale et maximale de γ ($\gamma_{(min)}$ et $\gamma_{(max)}$) au niveau des barres internes et externes à partir de la relation proposé par Sénéchal et al (2004), (tableau III.2).

1.5.3 Seuil de vitesse de mise en mouvement des sables

Il est important, également, de définir théoriquement les conditions d'entraînement des sédiments pour notre secteur d'étude, au niveau des appareils de mesure, afin de définir un seuil théorique à partir duquel les sédiments seront « arrachés ». Nous commençons donc par

déterminer le seuil d'arrachement à l'aide de la formule donnant la condition d'entraînement d'un grain de sable par le courant (paramètre de Shield).

$$\left(\frac{u.d}{v}\right)^2 > \frac{2}{3} \times \frac{\cos(\alpha).\tan(\phi) - \sin(\alpha)}{1 + \xi.\tan(\phi)} \frac{\rho_s - \rho_a}{\rho_a} \frac{g.d^3}{v^2}$$

avec :

$$\xi = 0.0575.C_s$$

 $C_s^2 = \frac{2g}{f_c}$ avec $f_c \in [10^{-3}, 2.5.10^{-2}]$

Le but étant de détecter l'arrachement des premiers grains de sable, nous devons minimiser f_c , nous prendrons donc 10^{-3} .

Avec :

 ϕ = 31° (angle de frottement interne du sable saturé pour cette granulometrie

 $v = 10^{-6}$ (viscosité dynamique de l'eau)

 α = pente de la plage (dans notre cas, a=0 car nous sommes au fond d'une fosse)

 $\rho s=2500 \text{ kg/m}^3$ (solide)

pa=1027 kg/m³ (fluide ambiant à salinité moyenne)

d= 0,2 mm et 0.14mm (granulométrie) (Sogreah 1995)

On trouve alors un seuil de vitesse d'entraînement de 0.37 m/s pour d=0.14mm, et 0,45 m/s pour d=0.2. Notons que ce modèle ne tient pas compte de la mise en suspension des sédiments due à la turbulence dans la zone de déferlement. On peut en effet considérer que le transport commence bien avant cette vitesse seuil dans la mesure ou la mise en suspension est régie par d'autres phénomènes.

L'approche théorique indique que les sables seront entraînés à partir d'une vitesse de courant de 0.37m/s, cette valeur concerne bien évidemment la couche limite du profil (fond sableux) Tout l'intérêt est de déterminer maintenant dans quelles mesures les deux sections de profil étudiées subissent des perturbations susceptibles de générer une mise en suspension plus ou moins importante.

1.5.4 Comparaison des mesures ADCP/ADV

La comparaison des mesures ADCP et ADV porte sur la houle et le courant.

1.5.4.1 La hauteur de houle

Les données de hauteur de houle sont calculées directement par l'utilitaire (WavesMon) de l'ADCP. La houle peut être définie à partir des enregistrements des variations de vitesses sur trois cellules au sein de la colonne d'eau et du capteur de pression.

Figure III 18 : comparaison des données de hauteur significative de houle mesurées en GI16 au dessus de l'ADCP et de l'ADV (Hs est déterminée sur l'ADV par rapport au déplacement des particules vers le nord (Hscuh), vers l'Est (Hscw)et par rapport à la pression (Hscp) et écart associés (vert)

Trois calculs de la hauteur significative à partir de l'ADV ont été effectués : par rapport au déplacement des particules vers le Nord vers l'Est et par rapport à la pression. La meilleure représentation de la houle est obtenue sur l'ADV à partir de la donnée de pression (ADVcp) (figure III.20).

	ADCP	ADV	Ecart type	% erreur
Hs moyen (m)	0.8	0.76	0.06m	9.38

Tableau III 3: Comparaison de la Hs moyenne à partir de l'ADV (pression) et del'ADCP

L'écart type moyen (0.06m) entre les deux appareils est très faible représentant environ 10% sur l'ensemble de la donnée (Tableau III.3). Cette variabilité diminue progressivement avec l'augmentation de la hauteur de la houle : 10.5% pour les valeurs inférieures à 1m et un peu moins de 6.5% pour les amplitudes de houle supérieures à 1m (Tableau III.4).

	total	valeurs seuils 1m		
		>	<	
Ecart moyen Hs moyen (%)	9.38	6.37	10.49	

Tableau III 4: Ecart associé à la mesure de courant par seuil comparaison Al	OCP A	4DV
--	-------	-----

1.5.4.2 Le courant

Il faut rappeler, dans un premier temps, que l'ADV et l'ADCP proposent des méthodes de mesure de courant différentes, ce qui nous contraint à filtrer les données. Nous avons donc effectué la validation de ces mesures dans la cellule commune aux deux appareils (cellule 2 en GI16). De plus, nous avons choisis comme fréquence d'enregistrement, la fréquence la plus faible (30 sec sur l'ADCP) en se plaçant sur la période d'enregistrement de l'ADV (21 novembre au 5 décembre 2005). Notons également le mode d'enregistrement par burst de l'ADV (enregistrement pendant 20mn toutes les 40mn, soit 20mn d'enregistrement continue par heure) nous a conduit à découper les données de l'ADCP selon cet échantillonnage. De plus, il est important de signaler que les données enregistrées par l'ADV correspondent aux composantes Est et Nord des vitesses des particules dans l'eau mesurées à 2 Hz. Pour obtenir une valeur sur 30 secondes, nous avons donc calculé les composantes Est et Nord moyennées sur 60 mesures dont nous en avons déduit la résultante des courants (vitesse et direction).

Les vitesses de courant

La comparaison des courbes de courant résultant (ADCP/ADV) témoigne dans son ensemble d'une bonne équivalence entre les mesures des deux appareils (figure III.21 et Tableau III.5).

Les résidus sur les valeurs s'élèvent à 0.04 m.s⁻¹, soit un écart, qui semble relativement élevée, de 26%. Ce pourcentage de variation sur la mesure est lié, en fait, aux fortes différences retrouvées entre le 2 et le 4 décembre 2005 qui correspondent à la plus grosse tempête durant la campagne de mesure. Rappelons que l'ADV avait été programmé pour optimiser la précision de l'acquisition pour les vitesses jusqu'à 0.3m.s⁻¹. Nous ne tiendrons donc pas compte, dans cette comparaison, de la période du 2 au 4 décembre. Si on exclue

cette période du traitement, l'écart retombe à 0.02, soit 16.6%. Il est important de noter également la régularité dans les écarts associés aux mesures des deux appareils, il apparaît ainsi que l'ADCP a tendance présenter des valeurs légèrement supérieures à celles mesurées sur l'ADV.

Figure III 19: intensité du courant et écart type entre valeur mesurées au dessus de l'ADCP et de l'ADV (rouge) associés (Cm désigne la vitesse du courant)

	ADCP	ADV	Résidus	% variation
Vitesse moyenne (m/s)	0.13	0.09	0.04	26.3
Vitesse moyenne (2 au 4 dec. 2005 exclue) (m/s)	0.09	0.09	0.02	16.6

Tableau III 5: Courant moyen et résidus associés

Un traitement sur les seuils de vitesse a également été effectué. Nous avons retenu deux seuils ; un premier seuil à 0.1 m.s^{-1} pour les valeurs très faibles et un deuxième à 0.25 m.s^{-1} correspondant à la valeur moyenne du courant sur la période. Etant donné que la programmation de l'ADV (choisie dans ce protocole) n'autorisait pas un enregistrement pertinent des valeur de vitesses de courant supérieures à 0.3 m.s^{-1} , nous n'avons pas retenu le seuil de vitesse correspondant à la vitesse théorique de mise en mouvement des sables (0.37 m.s^{-1}). Le traitement indique une diminution du pourcentage de variations avec l'augmentation des vitesses moyennes de courant (Tableau III.6). Sur l'ensemble de la période, on passe d'un écart de 27% sur des valeurs inférieures à 0.1 m.s^{-1} à un écart de 14% sur les intensités supérieures à 0.25 m.s^{-1} . Les mêmes types de calculs ont été réalisés en excluant la période du 2 décembre au 4 décembre 2005. La tendance à la diminution de l'écart

entre les appareils avec l'augmentation des vitesses de courant se confirme. L'écart associé aux vitesses inférieures à 0.1 m.s^{-1} s'élève à 30% (soit 3 points de plus que le calcul sur la période entière) et seulement 8.8% sur les intensités supérieures à 0.25 m.s⁻¹.

	total	valeurs seui	ls 0.1m/s	valeurs seuils 0.25m/s		
		>	<	>	<	
écart moyen total (%)	26.3	25.34	26.90	13.76	27.86	
écart moyen (2 dec au 4 dec. 2005 exclue) (%)	16.6	11.73	30.02	8.76	25.17	

Tableau III 6: écarts associés à la mesure de courant par seuil comparaison ADCP ADV

Ces résultats nous permettent de noter que si les écarts de mesure diminuent avec l'augmentation des vitesses et l'exclusion du calcul de la période du 2 au 4 décembre, l'écart, lui reste en revanche très important sur les faibles vitesses (<0.1 m.s⁻¹) quelle que soit la période retenue.

Nous insistons donc sur le fait que les valeurs $<0.1 \text{ m.s}^{-1}$ sont très probablement moins représentatives que celles se rapprochant du seuil d'arrachement $>0.25 \text{ m.s}^{-1}$.

Les directions de courant

Le même type de comparaison a été effectué sur les données de direction de courant. Notons que les appareils donnent des directions par rapport au Nord magnétique et que le décalage associé à l'orientation des appareils avant l'immersion (3°sur l'ADCP) a été pris en compte dans ces calculs.

Figure III 20: comparaison des directions de courant au dessus de l'ADCP et de l'ADV, et résidus (rouge)

La variation des courbes correspondant au cap pris par le courant témoigne de deux phénomènes principaux (figure III.22): une bonne corrélation des données à partir du moment où le courant est stabilisé, mais de forts écarts aux moments des basculement Est Ouest de courant.

Le fait que ces écarts ne soient pas constants exclue une erreur possible de calage des appareils dans le temps. Les écarts correspondent effectivement aussi bien à un « retard » qu'à une « anticipation » de l'ADCP. Notons une nouvelle fois que la période du 2 au 4 décembre 2005 présente un important décalage dans les données. De ce fait il en ressort une importante variation entre les appareils, qui s'élève à 28% sur l'ensemble de la période et 25% période du 2 au 4 décembre 2005 exclue. L'écart sur les directions moyennes s'élève à environ 12°(Tableau.III.7)

	ADCP	ADV	Résidus	% variation
Direction moyenne (°)	177	165.00	22.87	27.9
Direction moyenne (°) (2 au 4 dec. 2005exclue)	186	172.00	20.15	24.7

Tableau III 7: Direction du courant et erreur associée

Les courants et les directions associées

Nous avons ensuite associé les caps aux mêmes seuils de vitesse retenus dans le paragraphe précédent (Tableau III.8). Il en ressort une nouvelle fois que les forts écarts de cap sont associés aux faibles vitesses (41%). Des écarts de cap de seulement 7.8% sont associés aux vitesses fortes de courant. La période du 2 au 4 décembre 2005 est assez particulière puisqu'elle associe vitesses de courant relativement fortes et directions opposées. Si on exclue cette période du calcul, les faibles vitesses (<0.1 m.s⁻¹) confirment leur caractère disparate avec 42.6% d'écart sur la direction du courant contre seulement 4.3% pour les vitesses supérieures à 0.25 m.s⁻¹.

	total	valeurs seuils 0.1m/s		valeurs seuils 0.25m/s	
		>	<	>	<
incertitude moyenne totale (%)	27.9	8.44	41.24	7.83	41.24
incertirude moyenne (%) (2 au 4 dec. 2005 exclue)	16.57	5.69	42.62	4.31	43.48

 Tableau III 8: Ecart associé à la mesure de direction de courant suivant les seuils de vitesses comparaison

 ADCP ADV

Finalement les mesures ADCP et ADV sont très proches pour les caractéristiques de houle et les vitesses de courant relativement fortes. Nous avons pu mettre en évidence en contre partie de plus grandes variations entre les deux appareils pour les faibles vitesses. Ce dernier résultat témoigne très probablement de la limite inférieure des mesures des appareils et en particulier de l'ADCP.

1.5.5 Standardisation et traitement spécifique des données

Afin d'évaluer l'impact de la digue sur les dynamiques de courant dans la zone du déferlement, il est primordial de repositionner la direction de l'ensemble des données (propagation de la houle, direction du courant) par rapport à la normale à la côte, et non pas, comme le donnent les appareils, par rapport au Nord magnétique. Pour cela nous avons considéré l'azimut du profil (normale à la côte) comme axe de référence (Figure.III.23)

Figure III 21: Détermination des écarts à la normale à la plage. (fond ortho-photographie IGN 1998)

Cette correction a été appliquée à l'ensemble des données des appareils et s'est appuyée, dans un premier temps, sur l'identification de l'azimut du profil normal à la côte, passant par chaque ADCP. Nous avons pu définir comme le montre la figure III.23 un azimut au 198° pour GI17 et 189° pour GI16. Des valeurs positives de direction de courant indiqueront une dynamique dirigé vers le cadran Est redéfini pour chaque appareil, et à l'inverse les valeurs négatives témoigneront d'un flux à composante Ouest. Une augmentation de la valeur négative, ou positive correspond à un éloignement de l'axe normal à chaque profil.

Notons que le courant mesuré sur chaque appareil est déterminé, en sortie des appareils, par sa composante Est et sa composante Nord magnétique. L'évaluation de l'importance de chacune de ses composantes (longitudinale ou transversale) dans la détermination du courant résultant est importante pour l'identification des dynamiques dans la zone du déferlement. Or la réorientation du courant résultant implique également une normalisation des composantes de courant. La méthode de rectification des composantes revient à effectuer une rotation de la valeur de l'angle entre le Nord magnétique et la normale à la plage (9° en GI16 et 18° en GI17) pour chaque composante. Le sens trigonométrique étant l'inverse de celui du sens des aiguilles d'une montre, et étant donné que le décalage entre nord magnétique et la normale à la plage est effectué vers la droite, les valeurs d'angle seront affectées d'un signe négatif.

L'ensemble des composantes de courant sera rectifié et normalisé en utilisant les formules de transformation trigonométriques proposées dans la figure III.24.

Figure III 22: méthode de rectification des composantes de courant par rapport à la normale à la plage

Nous analyserons donc dans les différents chapitres, comme suggéré dans l'analyse morphologique, (cf. ChapII) les dynamiques longitudinales et transversales. La houle et les courants seront abordés d'une part en fonction de la part représentée par chacune des composantes de courant dans la détermination de la résultante (courant réel ressenti), mais également par l'évaluation des phénomènes réflectifs sur un plan transversal.

1.6 Evaluation des coefficients de réflexion (en énergie).

Les phénomènes réflectifs seront abordés (dans le paragraphe 3.4) à partir du calcul des coefficients de réflexion en énergie. Ces coefficients seront déterminés au niveau des deux appareils de mesure, placés le long d'un même profil transversal (GI16), au droit de la digue: le S4, dans la fosse interne et l'ADV, dans la fosse externe. Nous présenterons donc ici la méthode spécifique utilisée pour la détermination des ces valeurs (Rey, et al 2005).

Le principe repose sur la détermination, en considérant une houle pseudo stationnaire, du rapport entre l'amplitude de la houle réfléchie (a_r) et l'amplitude de la houle incidente (a_i) (figure III.25).

Une onde partiellement stationnaire peut se définir comme la superposition d'une onde incidente et d'une onde réfléchie selon les termes numériques suivants : - onde quasi stationnaire « totale »:

$$\xi_{totale(x,t)} = \xi_i + \xi_r = a_i \cos(\omega t - kx) + a_r \cos(\omega t + kx)$$

- onde incidente se propageant vers les x (axe cross shore) croissants :

$$\xi_{i(x,t)} = a_i \cos(\omega t - kx)$$

avec

 a_i : amplitude de la houle incidente

$$\omega t$$
: variation dans le temps $\omega = \frac{2\pi}{T}$ (T: période)
et kx : propagation de l'onde $k = \frac{2\pi}{\lambda}$ (λ : Longueur d'onde)

- onde réfléchie se propageant vers les x décroissants :

$$\xi_{r(x,t)} = a_r \cos(\omega t + kx)$$

avec :

 a_r : amplitude de la houle réfléchie

 ωt : variation des hauteurs d'eau dans le temps $\omega = \frac{2\pi}{T}$ (T: période)

et kx : variation des hauteurs d'eau dans l'espace, propagation de l'onde

$$k = \frac{2\pi}{\lambda}$$
 (λ : Longueur d'onde)

Nous venons de déterminer l'expression numérique d'une onde partiellement stationnaire. Concrètement, **le coefficient de réflexion en énergie** (Cr) peut se déterminer par le rapport, entre l'amplitude de la houle réfléchie (a_r) , et l'amplitude de la houle incidente (a_i) au carré en un point comme décrit dans la figure (III.25a).

Figure III 23a: détermination du coefficient de réflexion dans un cas idéal pour une houle non déferlante sur fond plat

Cependant, il faut définir les valeurs de (a_r) et (a_i) afin d'identifier ces coefficients de réflexion. A partir des valeurs mesurées par les courantomètres, nous pouvons définir deux équations nous permettant de définir les deux inconnues (a_r) et (a_i) .

$$U_{mesuré} = C_{(z)}(\xi_i - \xi_r)$$

U: vitesse horizontale

 $C_{(z)}$: Variation de la vitesse des particules avec la profondeur

$$P_{mesuré} = S_{(z)}(\xi_i + \xi_r)$$

P: Pression

 $S_{(z)}$: Variation de la pression avec la profondeur

Pour chaque période une valeur de (a_r) et de (a_i) est définie comme illustré dans la figure III.25b.

Figure III 25b: détermination des valeurs de (a_r) et de (a_i) en fonction de la période

Enfin le coefficient de réflexion est déterminé pour chaque burst en moyennant l'ensemble des valeurs de (a_r) et de (a_i) sur l'ensemble du spectre corespondant (figure III.25c)

Figure III 25c: détermination des valeurs moyennes de (a_r) et de (a_i) en fonction de la période

1.7 Synthèse par l'analyse statistique multivariée

La complexité des dynamiques interagissant sur le système plage impose de confronter une multitude de paramètres afin d'en comprendre le fonctionnement. Cette confrontation se fera par le biais de l'analyse statistique multivariée souvent utilisée en géomorphologie côtière.

L'objectif est ici d'identifier des manifestations communes sur notre site, dans le but de définir un schéma de fonctionnement. Nous avons dans un premier temps effectué une analyse statistique de type Analyse en Composante Principale (ACP). Il est effectivement aisé de représenter les observations d'une variable (sur une droite) de deux variables (dans un plan), de trois variables (en faisant de la géométrie dans l'espace) mais l'étude devient impossible lorsque le nombre des variables est supérieur à trois.

Le but de cette méthode statistique type ACP, est la réduction des dimensions de l'espace de représentation des données en projetant le nuage de points dans un ou plusieurs graphiques plans, en essayant de limiter la perte d'information au cours de cette réduction.

Cette technique descriptive permet de faire la synthèse de l'information contenue dans un tableau de variables comportant, en lignes M échantillons ou observations, et en colonnes, N variables (avec N<M). Cette méthode représente ainsi les affinités entre observations et celles entre variables, séparément et sous forme de nuage de points dans un espace à N-1 dimension (N = nombre de variables) défini par N-1 axes factoriels. La représentation en composantes principales permet donc d'identifier de nouvelles variables, indépendantes, nommées « axes », combinaisons linéaires initiales, possédant une variance maximum. Ces axes comportent une part croissante de l'inertie ou information des deux nuages.

L'interprétation consiste ici, à appréhender les relations complexes entre les échantillons ou les variables en recherchant notamment, dans le cas présent, des significations d'ordre météo marines.

Dans cette étude nous croiserons des données temporelles (date et heure d'acquisition des données : 123 observations) avec des variables relatives aux forçages (courant, houle, vent, variations verticales du plan d'eau). Trois phénomènes seront abordés dans le cadre de ce travail :

- (1) les variations générales, moyennées sur la colonne d'eau, sur un plan longitudinal (données ADCP, fosses externes respectives GI16 et GI17).

-(2) les variations par cellules caractéristiques (fond et surface) sur un plan longitudinal (données ADCP, fosses externes respectives GI16 et GI17)

-(3) les variations des paramètres de houle, de courant, et de vent sur un profil transversal (Fosse interne S4 et externe ADV en GI16)

Cette analyse statistique sera appliquée à la période comprise entre le 21 novembre et le 8 décembre 2005 pour les ADCP et du 21 au 30 novembre 2005 pour le S4 et l'ADV.

L'analyse proposée, dans les paragraphes suivants, se basera, dans un premier temps, sur la caractérisation du contexte météo marin de la campagne de mesure. L'étude portera ensuite sur la comparaison des données des deux ADCP placés au sein de la même unité morphologique sur les deux sites : en aval dérive (GI17) et au droit de la digue (GI16) à respectivement 370 et 300 m de la côte. Ce travail porte essentiellement sur l'étude des variations longitudinales des dynamiques marines. Enfín l'étude s'attachera à étudier les dynamiques marines sur le profil transversal (GI16). Nous comparerons de façon générale les données du S4 placé dans la fosse interne (100m de la digue) et celles de l'ADV (dans la fosse externe). Nous effectuerons en troisième partie une synthèse de l'ensemble de ces résultats à partir d'une analyse statistique multi variée.

Le but de cet essai est de trouver, si on assiste ou non, à la présence au cours d'une tempête, de perturbations enregistrées par les données de courant, tel qu'un gradient éventuel de vitesse entre les appareils, pouvant justifier les évolutions bathymétriques récentes au droit et en aval dérive de la digue sur la plan longitudinal et/ou transversal.

2 Conditions météo marines générales

Il est important dans un premier temps d'identifier et caractériser les évènements météo-marins généraux durant la campagne (figure III.26 et III.27). Nous nous intéresserons aux vents et aux houles, pour lesquels la direction et les valeurs maximales d'intensité seront prises en compte, ainsi qu'à la marée. La période étudiée sur laquelle a pu s'établir un bilan global des évènements météo marins sur les deux sites s'étend du 21 novembre au 8 décembre 2005.

2.1 Le vent

La figure III.27 témoigne, en terme d'occurrence, de la prépondérance des vents de Nord Ouest et de Sud Ouest, respectivement 25 et 20% du temps. Les vents de SE censés correspondre aux épisodes de tempête ne représentent que 10% du temps. Les vitesses présentent une distribution relativement homogène des plus fortes intensités que ce soit pour les vents du quadrant Est ou Ouest. Ces derniers (Sud Est, Est et Nord Est) sont les plus intenses, 10 m.s⁻¹ contre un maximum de 8 m.s⁻¹ pour les vents du quadrant Ouest (Sud Ouest, Ouest et Nord Ouest). Finalement ces données témoignent de conditions de vent très variables et parfois intenses durant la campagne.

2.2 La houle

En l'absence de données de houle au large suffisamment proches du site pour être retenues dans cette analyse, nous avons utilisé les données de houle fournies par les deux ADCP (direction et hauteur significative maximale). L'inconvénient majeur repose sur le fait que les houles enregistrées par les appareils ont déjà subit l'influence du fond (réfraction) mais restent pertinentes dans le cas d'un comparaison sur des sections morphologiques identiques (fosse externe).

Ces informations nous permettent en effet de comparer, justement, les différences de déformation de la surface, pour deux secteurs spatialement distincts, pendant les mêmes évènements météo marins. En termes de fréquence les houles de Sud Ouest et Sud sont très largement représentées (90% du temps), avec respectivement 60 et 35 % en GI17 et 50 et 40% en GI16 (Figure III.27).

Figure III 26 : caractéristiques des conditions météo marines entre le 21 novembre 2005 (16h30) et le 8 décembre 2005 (16h30). Hs : hauteur significative de la houle, Tp : période au pic de la houle, Dp : direction de propagation de la houle

Figure III.27 : synthèse cartographique des conditions de forçages pendant la campagne de mesures

On atteint en terme de hauteur, des valeurs maximales en provenance du Sud et Sud Ouest au dessus des appareils, de respectivement 2.2m pour GI17 et 2.06m pour GI16. Ce dernier se démarque par des Hauteurs significatives maximales de 1.5m et 1.7m venant des secteurs Sud Est et Ouest contre seulement 0.8 et 1m en GI17. GI17 montre en revanche la présence de vagues venant du secteur Nord, certainement à mettre en relation avec les épisodes de Mistral. Ces valeurs ne se retrouvent pas en GI16 où la digue constitue certainement un « saute vent » et reporte l'action des vents de terre plus loin en mer. Ces résultats permettent de montrer d'une part une prédominance des houles de secteur Sud et Sud Ouest pendant la campagne et d'autre part l'existence locale d'état de mer de relativement distincts sur le site d'étude

2.3 La marée

Pendant la campagne de mesure, les données de marée, issues de du marégraphe, d'Endoume montrent, dans l'ensemble, des valeurs relativement « normales » avec des variations d'amplitude de l'ordre de -10 à +30cm NGF. La période entre le 2 et le 3 décembre 2005 se démarque par une côte beaucoup plus importante (+80cm NGF) coïncidant avec un important gradient de pression atmosphérique mesuré entre Sète (100km à l'Ouest) et Toulon (100km à l'Est).

2.4 Synthèse des conditions de vent et de houle

Afin de synthétiser les évènements météo marins et en particulier leur intensité, un classement par intensité d'agitation sur l'ensemble de la période a été effectué. Ce classement est basé sur les caractéristiques du vent (intensité, direction) et de la houle (hauteur, direction) à un pas de temps calé sur les relevés anémométriques (tri horaire) du 21 novembre au 8 décembre.

Ce classement permet de définir différentes périodes d'agitation entre les épisodes « sans vent et sans houle (V1H1) » aux épisodes à « fort vent et forte houle (V3H3)» (Tableau III.9).

Cette classification permet de définir la période du 21 novembre au 8 décembre 2005 comme relativement agitée puisque les houles classées H2 ont représenté 40% du temps et les houles classées H3 totalisent 8% des observations. Les périodes plus calmes quant à elles constituent 49% du temps. Le classement des épisodes météo-marins permet donc d'individualiser trois principales périodes d'agitation que nous décrivons.

La période du 24 au 25 novembre 2005 présente dans son ensemble un indice d'agitation de niveau 5. Les vents assez forts (niveau 2), principalement de Nord Est à Sud Est, sont associés à la côte (au dessus des ADCP) à des houles de Sud à Sud Ouest de niveau deux. Ponctuellement, le 25 novembre 2005 au matin montre un indice d'agitation de 8 au dessus de l'ADCP placé en GI16.

Identification des seuils							
Vent 1	0 à :	5m/s					
Vent 2	V2	6 à 1	0m/s				
Vent 3	V3	>10	0m/s				
Houle 1	H1	0 à 0	.75m				
Houle 2	H2	0.75 à	1.5m				
Houle 3	Н3	1.5 à	2.3m				
Classification de l'agitation							
		Nombres					
Indice d'agitation	Groupement	d'Observations	%				
1	V1 et H1	31	22.79				
2	V2 et H1	37	27.20				
3	V3 et H1	0	0				
4	V1 et H2	25	18.38				
5	V2 et H2	30	22.05				
6	V3 et H2	0	0				
7	V1 et H3	3	2.20				
8	V2 et H3	7	5.14				
9	V3 et H3	2	1.47				
		TOTAL 136					

Tableau III 9 Classification des épisodes météo marins

L'épisode du 27 au 30 novembre 2005 est un peu moins virulent mais reste classé parmi les évènements d'indice d'agitation de 4 à 5. Les vents et les houles sont orientés principalement Ouest à Sud Ouest.

Enfin la période du 2 au 7 décembre 2005 apparaît plutôt hétérogène, avec des indices s'échelonnant de 4 à 9 avec des tendances de vent oscillant entre le Sud Est et le Sud Ouest. La nuit du 2 au 3 décembre 2005 classée en indice 9 est particulièrement agitée. Les vents

forts de SE à SW sont associés au dessus des appareils à de fortes houles de Sud, Sud Ouest et Sud Sud Ouest.

Cette classification et l'étude de la répartition des tendances (orientation/intensité) de vent et de houle traduisent une situation météo marine assez atypique puisque les évènements les plus virulents et les plus longs, sont associés à des vents et des houles essentiellement de Sud à Sud Ouest. La période étudiée tranche finalement avec le contexte dynamique caractéristique sur un pas de temps annuel (cf chap1), même si quelques épisodes de Sud Est relativement forts, mais très ponctuels, sont à recenser. Il est important de noter que les mesures sont effectuées à faibles profondeurs et que les houles réfractées enregistrées ont probablement une direction Sud Sud Est au large. En revanche, si effectivement les évènements météo marins générés par les flux d'Est rencontrés pendant cette campagne sont relativement peu fréquents, ils présentent l'avantage de proposer un large panel de conditions permettant de travailler sur des situations dynamiques différentes dans l'optique d'une caractérisation des dynamiques marines en périodes d'agitation autour d'une digue frontale.

3. Variations longitudinales de la houle et du courant

Nous considèrerons dans ce paragraphe les données enregistrées par les deux ADCP sur la période du 21 novembre au 8 décembre 2005.

Nous ferons dans ce paragraphe une présentation générale des dynamiques de courant et plus généralement des conditions d'agitations. Nous présenterons d'une part les variations verticales (sur la colonne d'eau) du courant sur l'ensemble de la période, et d'autre part nous analyserons ses variations temporelles moyennées heure par heure sur la colonne d'eau, en fonction des conditions de houle.

3.1 Variations verticales des vitesses de courant résultants.

Nous traiterons dans ce paragraphe des variations spatiales (verticales) des vitesses de courant sur les deux ADCP. L'analyse des vitesses de courant sur la colonne d'eau a pour but de déterminer verticalement le comportement général du profil de vitesse sur chaque profil considéré pour l'ensemble des conditions météo marines rencontrées. Il se base sur des relevés toutes les 30 secondes, la marge d'incertitude retenue sera de 9% pour les valeurs maximales (Tableau III.6).

Figure III.28: Vitesses moyennes (moy) et maximales (max) dans la colonne d'eau. Les fourchettes de valeur correspondent respectivement à l'écart type sur les vitesses moyennes, et à l'incertitude sur les valeurs maximales. Le seuil entre 0.37 et 0.45m/s correspond à la valeur théorique du seuil d'arrachement des sables.

Les deux graphiques présentant les profils de courant moyen et maximal pour les deux secteurs (figure III.28), témoignent d'une part de vitesses plus importantes en GI17 quelle que soit la section dans la colonne d'eau et d'autre part de la forte variabilité entre vitesse moyenne et maximale. Les valeurs moyennes restent relativement faibles en tout cas pour les sections les plus profondes et demeurent, sur l'ensemble de la colonne, inférieures à la vitesse d'entraînement des sables, sauf en surface. Les valeurs maximales sont en revanche très importantes puisqu'on atteint des vitesses de respectivement 1.6m.s⁻¹ (+/- 0.128 m.s⁻¹ avec 8% d'erreur) et 1.2 m.s⁻¹ (+/- 0.96 m.s⁻¹ avec 8% d'erreur) sur les deux cellules de surface en GI17 et GI16. En profondeur les vitesses restent supérieures au seuil d'entraînement des sédiments témoignant de conditions particulièrement dynamiques favorables au transport sédimentaire.

Ce paragraphe a présenté simplement une « fourchette » des valeurs de courant. Il a mis en évidence la présence de vitesse plus importantes sur les cellules supérieures de la colonne d'eau ainsi que la forte variabilité entre des valeurs moyennes et des valeurs maximales qu'il est utile maintenant de replacer sur une échelle temporelle plus fine sur la totalité de la campagne de mesure.

3.2 Variations temporelles des courants résultants.

Nous avons analysé ici les données du 21 novembre au 8 décembre 2005 en utilisant des valeurs moyennées sur une heure, soit 399 valeurs pour 16 jours.

Nous comparerons dans un premier temps la vitesse (Cm) et la direction du courant (Cd) mesurées au dessus des deux ADCP sur l'ensemble de la colonne d'eau (Figure III.29) que nous confronterons par la suite aux données horaires de houle.

Figure III 29 : Variations temporelles de la direction et de l'intensité du courant sur les deux ADCP. Le seuil entre 0.37 et 0.45m/s correspond à la valeur théorique du seuil d'arrachement des sables.

La représentation graphique des variations temporelles de la direction et de l'intensité du courant moyennées sur la colonne d'eau montre d'une part une organisation Ouest-Est des dynamiques et d'autre part une prédominance de courant dirigé vers le cadran Est (valeurs positives) principalement entre 90 et 100° d'écart par rapport à l'axe normal. Ils représentent 65% des valeurs, contre 35% vers l'Ouest.

En ce qui concerne le courant, l'ADCP placé en GI17 témoigne de vitesses généralement plus élevées que celui en GI16, confirmant les résultats obtenus dans le paragraphe précédent. Ces valeurs comportent, cependant, dans le détail, des disparités importantes. Pour identifier la part de chacune des directions dans la distribution des vitesses nous avons défini plusieurs seuils d'intensité de courant que nous avons appliqué à chaque composante directionnelle Est (+) ou Ouest (-).

Trois seuils ont été retenus : un seuil de vitesse significative supérieure 0.25 m.s^{-1} considéré comme la vitesse moyenne sur la période, un seuil intermédiaire supérieur à 0.4 m.s^{-1} (vitesse moyenne maximale correspondant également à la valeur moyenne du seuil d'entraînement des sables) et enfin un seuil de 0.6 m.s^{-1} (Tableau III.10).

	TOTAL		SEUIL			
	observations	%	Observat	tions	Pourcentage	
				Seuil		Seuil
			seuil 0.4m/s	0.25 m/s	seuil 0.4m/s	0.25 m/s
GI17 (-)	146	36.6	15	35	3.7	8.8
GI17 (+)	253	63.4	45	80	11.8	20
GI16 (-)	137	34.3	6	13	1.5	3.25
GI16 (+)	262	65.7	17	78	4.3	19.5

 Tableau III 10: répartition des directions et des vitesses de courant sur les deux ADCP (GI16 amont dérive)
 GI17 (aval dérive). Le signe (-) désigne une direction Ouest du courant et (+) une direction Est.

Cette classification par seuil confirme la prédominance des directions de courant vers l'Est avec respectivement 63.4 % en GI17 et 65.7% en GI16. Ces chiffres témoignent d'un décalage existant au niveau des pourcentages de courant vers l'Est ou l'Ouest sur les deux appareils. Autrement dit environ 2 % des valeurs montrent des courant opposés. Cette opposition correspond à la période la plus dynamique du 2 au 3 décembre 2005. Ce constat est d'autant plus curieux que les vitesses pendant cette période sont relativement significatives entre, 0.3 et 0.6 m.s⁻¹. Ceci implique que cette divergence de courant ne peut pas être attribuée à une erreur liée à l'incertitude attribuée aux faibles vitesses mesurées par les appareils.

Si les courants orientés vers l'Est sont les plus fréquents ils sont aussi les plus intenses. En GI17, 11.8% des observations sont attribuables à des vitesses supérieures à 0.4 m.s⁻¹ vers l'Est contre seulement 3.7 % pour un courant dirigé vers l'Ouest. La même distribution de courant supérieur à 0.4 m.s⁻¹ se retrouve en GI16 avec respectivement 4.3% vers l'Est et 1.5% vers l'Ouest.

Finalement les vitesses supérieures à 0.4 m.s⁻¹ vers l'Est sont quatre fois plus représentées que celles dirigées vers l'Ouest tandis que les observations de courant vers l'Est sont seulement deux fois supérieures à celles vers l'Ouest.

Synthèse :

Deux résultats essentiels ressortent de cette analyse :

-La confirmation de la présence de vitesses de courant supérieures enregistrées en GI17

-Une prépondérance de courant dirigé vers l'Est en fréquence et en intensité pendant la campagne.

Afin de compléter l'analyse et pour tenter d'expliquer les résultats mis en évidence dans ce paragraphe, nous allons aborder maintenant les variations temporelles de la houle.

3.3 Variations temporelles de la houle.

Pour ce travail, les données de direction de houle, ont subit la même transformation que les données de courant : la direction de propagation de la houle données en sortie de l'appareil a été recalculées par rapport à la normale à la plage. Deux représentations ont été choisies pour illustrer les caractéristiques de houles. Une représentation graphique confrontant direction de houle et hauteur significative au dessus des deux ADCP, et un tableau représentant la distribution relative des hauteurs en fonction des directions. Cette dernière représentation s'est appuyée, comme pour l'analyse des courants sur l'identification de seuils. Les seuils retenus ici correspondent aux valeurs retenues en début de ce chapitre pour le classement des épisodes de tempête.

Figure III 30: variations temporelles de la direction et de la hauteur significative de la houle enregistrée par les deux ADCP

Globalement quatre périodes se distinguent par des conditions d'agitation marquées : les 24 et 25 novembre, les 29 et 30 novembre, du 1 au 3 décembre et du 4 au 7 décembre, soit 11 jours comptabilisés sur 17 jours de déploiement (Figure III.30). La représentation temporelle des variations de la hauteur significative de la houle et de sa direction par rapport à la perpendiculaire au rivage témoigne d'une distribution assez inégale des hauteurs de houle sur la période. GI16 montre, en effet, un nombre plus important de houles supérieures à 0.75m, avec 47,7% des observations contre 44.4% en GI17. En revanche sur ce dernier, la part des houles inférieures à 0.75m est supérieures 55.6% contre 52.3% en GI16 (Tableau III.11).

	Observations				Total		
	Seuil			Seuil			
	0-0.75m	0.75-1.5m	>1.5	0-0.75m	0.75-1.5m	>1.5	
GI16	209	148	42	52.3	37.1	10.6	399
GI17	222	137	40	55.6	34.3	10.1	399

Tableau III 11: Distribution des houles significatives par seuil de hauteur

Le deuxième élément mis en valeur par ces graphiques (Figure III.30 et Tableau III.12) est une prédominance des houles se propageant vers l'Est pour environ 80% du temps. Seuls quelques épisodes présentent une direction de propagation bien identifiée vers l'Ouest (20% des observations). On distingue notamment la journée du 22 novembre 2005 dans un contexte de faible houle entre 0.5 et 1m et surtout la période du 1 au 3 décembre qui, dans un contexte de fortes houles, présente la particularité de voir un sens de propagation dans un premier temps vers l'Ouest puis vers l'Est. La direction se stabilise ensuite avec un très faible angle d'incidence par rapport au rivage illustrant une propagation frontale à la côte. De plus ces houles se propageant vers l'Ouest se caractérisent par des hauteurs plus faibles 78 et 66.6% des observations pour GI16 et GI17. Les faibles houles dirigées vers l'Est ne constituent que 45 (GI16) et 53% (GI17) des observations. Il faut également noter que GI16 se démarque par environ 55% de vagues supérieures à 0.75m se propageant vers l'Est pour seulement 47% en GI17. En revanche au dessus de ce dernier appareil les vagues se propageant vers l'Ouest sont plus représentées (33%) qu'en GI16 (22%).

	Observations				Pourcentages			
		Seuil			Total	Seuil		
	Total	0-0.75m	0.75-1.5m	>1.5m	%	0-0.75m	0.75-1.5m	>1.5
GI16 (-)	83	65	12	6	20.8	78.3	14.4	7.3
GI16 (+)	316	144	136	36	79.2	45.5	43.1	11.4
GI17 (-)	72	48	18	6	18	66.6	25	8.4
GI17 (+)	327	174	119	34	82	53.2	36.4	10.4

 Tableau III 12: Distribution des houles significatives par direction de propagation et seuil de hauteur. Le signe

 (-) désigne une direction Ouest du courant et (+) une direction Est.

Il est intéressant de remarquer une nouvelle fois le décalage existant entre les pourcentages totaux de houles vers l'Est ou vers l'Ouest. En effet ici, à l'inverse des données de courant, ces observations correspondent à des périodes de calme caractérisées par des très faibles houles.

Finalement il faut d'abord retenir que pendant la campagne de mesures la majorité des houles se propageaient vers l'Est. L'ADCP placé en GI16 concentre un plus grand nombre de houles moyenne (0.75<Hs>1.5) et celui placé en GI17 témoigne au contraire d'une prédominance des faibles houles (Hs<0.75). En revanche les deux appareils ont enregistré le même pourcentage de « fortes » houles (>1.5m) respectivement 11.4 et 10.4%.

Le second point intéressant à rappeler, est un nouveau décalage cette fois ci entre les données de courant et les données de houle. Nous venons de le voir, environ 80% des houles se propagent vers l'Est mais si nous reprenons les résultats de l'analyse des caractéristiques générales du courant, environ 65% des flux sont dirigés vers l'Est.

Il parait donc essentiel à présent d'analyser conjointement les données de courant (direction Cd, intensité Cm) aux données de houle que nous venons de décrire (direction Dp et hauteur significative Hs).

3.4 Variations temporelles couplées de la houle et du courant.

Les figurés graphiques en « histogrammes » représentent les directions de houle et de courant et les figurés en « courbe » la vitesse moyenne du courant sur la colonne d'eau, ainsi que la hauteur significative de la houle

Sur le premier appareil étudié (GI17) (figure III.31). les tendances générales de direction de houle et de courant semblent se recouper. En revanche ce graphique met un autre phénomène en évidence : le développement d'un courant longitudinal même dans le cas de houles quasiment perpendiculaires à la côte. Un faible angle d'incidence suffit en effet à l'établissement de dynamiques longitudinales. Cependant si dans la majorité des cas, l'angle d'incidence de la houle et la direction du courant vont dans le même sens, des comportements atypiques se produisent.

Figure III 31 : Variations temporelles des caractéristiques de houle et de courant en GI17. Le seuil entre 0.37 et 0.45m/s correspond à la valeur théorique du seuil d'arrachement des sables.

La journée du 25 novembre en est une parfaite illustration, les houles relativement développées (entre 0.8 et 1m) se propagent vers l'Est et coexistent avec un courant très faible vers l'Ouest. C'est également le cas pour la période du 1 au 3 décembre où les fortes houles (>2m au dessus des appareils) présentant un sens de propagation à faible angle d'incidence plutôt vers l'Est ne développent pas de courant longitudinal important. En effet les vitesses de courant (0.4 à 0.6m/s) sont équivalentes, voire inférieures au 25 novembre qui pourtant est caractérisé par des houles n'excédant pas 1.2m, le même phénomène est observé le 29 novembre 2005.

Les mêmes tendances s'observent en GI16. On a sur la figure III.32 la confirmation d'une prépondérance des dynamiques dirigées vers l'Est. En revanche les anomalies rencontrées en GI17 sont moins représentées ici. Seule la période du 28 novembre 2005 montre une opposition entre direction de propagation de la houle et direction du courant et dans un contexte dynamique calme (faibles houles < 0.4 m, et faibles courants < 0.2 m/s).

Figure III 32: Variations temporelles des caractéristiques de houle et de courant en GI16 Le seuil entre 0.37 et 0.45m/s correspond à la valeur théorique du seuil d'arrachement des sables.

Finalement de la confrontation houles/ courant au dessus des deux appareils il en ressort :

-l'importance en fréquence et en intensité des dynamiques dirigées vers l'Est.

-Une fréquence moins importante des fortes houles en GI17 mais des vitesses de courant plus élevées qu'en GI16.

-Une corrélation correcte en GI16 entre vitesse de courant et hauteur de houle, qui ne se retrouve pas en GI17 (figure III.33).

Figure III 33: Corrélation entre hauteur de houle et vitesse de courant

-En revanche la présence « d'anomalies » plus importantes houles/courant en GI17
-Une bonne corrélation entre la direction de propagation des vagues par rapport à la normale à la plage et l'orientation du courant

Ces résultats sont observés visuellement sur les figures qui décrivent les courbes d'intensité et d'orientation des dynamiques générales, une analyse statistique type ACP sera réalisée en utilisant sur l'ensemble des données de courant, de houle, de vent, de niveau de plan d'eau.

Ce paragraphe a analysé les dynamiques de courant moyennées sur la colonne d'eau, or ce courant est la résultante de deux composantes : longitudinale et transversale. Il est vrai que les données présentées illustraient une très nette tendance à l'organisation Est Ouest des dynamiques, la composante long shore est donc sans aucun doute très largement représentée. Mais il faut analyser également la composante transversale du courant au dessus des deux appareils, car même si les vitesses sont relativement plus faibles que sur l'axe longitudinal, elles peuvent être ignorées.

3.5 Variations temporelles des composantes de courant.

Notons que nous comparons ici uniquement la part des composantes transversales et longitudinales dans l'explication de la résultante de courant. Ce travail porte bien sur une comparaison <u>longitudinale</u> des dynamiques de courant, nous n'abordons pas ici les dynamiques sur un profil transversal. Les flux, nous l'avons signalé plus haut, sont majoritairement dirigés vers l'Est, nous n'insisterons donc pas sur ce point, mais nous utiliserons simplement la résultante long shore à titre de comparaison avec celle cross shore. Notons également que nous analysons les vitesses moyennées sur la colonne d'eau en conservant un pas de temps horaire. De plus, rappelons également que les mesures de courant avaient été « normalisées », réorientées par rapport à la normale à la côte. Les composantes transversales et longitudinales s'en sont donc trouvées modifiées.

3.5.1 Répartition des composantes sur la colonne d'eau.

Le but de cette partie consiste à déterminer les caractéristiques moyennes des vitesses de courant de la colonne d'eau au dessus des deux appareils. Des valeurs négatives de U indiquent une direction dominante vers le Sud de la composante transversale, et des valeurs négatives de V indiquent une direction dominante vers l'Ouest de la composante longitudinale. Nous considèrerons les valeurs maximales de courant, en intégrant une incertitude de 8% (tableau III.6).

Figure III 34 : Répartition des vitesses maximales des composantes U (transversale) et V (longitudinales) sur la colonne d'eau.

L'analyse visuelle des deux graphiques (figure III.34) met en évidence deux points : la prépondérance en termes de vitesses, d'une composante longitudinale (V) dirigée vers l'Est en particulier en GI17 (valeurs positives)

la prépondérance de la composante longitudinale (V) sur la composante transversale (U).

Cependant si la répartition de la composante V est relativement homogène le long de la colonne d'eau au dessus des deux ADCP, celle de la composante U propose des résultats assez disparates.

Dans le détail GI17 propose des maximums de composantes transversales (U) plus intenses vers le Nord, alors qu'en GI16 les composantes de vitesses vers le Sud sont largement dominantes. De plus si en GI17 la composante longitudinales (V) est plus marquée qu'en GI16, les valeurs maximales et minimales de la composante transversale (U) sont en revanche moindre qu'en GI16 en particulier au sommet et au bas de la colonne d'eau. Ces observations témoignent de deux sites aux comportements relativement différents (figure III.35).

- en GI17, la composante longitudinale est largement prédominante sur la composante transversale, avec une tendance essentiellement dirigée vers l'Est (longitudinale) et la côte (transversal).

- en GI16, la composante longitudinale est largement prédominante sur la composante transversale, avec une tendance essentiellement dirigée vers l'Est (longitudinale) et, à l'inverse de GI17, vers le large (transversale).

Figure III 35 : Orientation des composantes dominantes longitudinales (V) et transversales (U) de courant au dessus des deux ADCP

3.5.2 Variation temporelle des composantes de courant.

Nous venons de prendre en compte des conditions maximales de courant sur la colonne d'eau, il est important maintenant de repositionner ces composantes durant la période d'étude. La répartition des vitesses moyennes de courant transversal atteste de la forte irrégularité de cette composante (figure III.36). Les résultats dévoilent dans l'ensemble une prédominance des directions vers le large avec respectivement 91% des observations en GI16 et 75% en GI17. Seule la période du 2 au 4 décembre montre des vitesses significatives vers la côte en particulier en GI17.

L'étude des variations temporelles des minimums et des maximums de U (composante transversale, figure III.36) montre quatre périodes relativement bien individualisées. Du début de la campagne jusqu'au 25 novembre 2005 les composantes de U vers le large sont bien développées

-Entre le 25 et le 30 nov.2005: fortes irrégularités avec en particulier forte réduction des vitesses vers le large les 25 et 26 et 29, 30 novembre 2005.

-Du 2 au 4 décembre: prédominance des composantes Nord, vers la côte (conditions de houles déferlantes)

-Du 4 au 8 : augmentation progressive des vitesses vers le large.

Figure III 36 : Variations temporelles des moyennes de composante U. Les valeurs négatives indiquent une direction vers le large et les valeurs positives indiquent une direction vers la côte. La zone en grisé correspond à des conditions de houles déferlantes selon le tableau III.2 avec y=0.4

Figure III 37: variations temporelles des maximums et des minimums de U. La zone en grisé correspond à des conditions de houles déferlantes selon le tableau III.2 avec $\gamma=0.4$. Le seuil entre 0.37 et 0.45m/s correspond à la valeur théorique du seuil d'arrachement des sables.

Finalement le classement démontre qu'en période d'agitation (rappelons que les 25 et 26 novembre, 29 et 30 novembre et les 2 et 3 décembre avaient été classés en épisodes agités) les vitesses des composantes U vers le large diminuent s'accompagnant d'une augmentation parfois forte des composantes U vers le Nord.

3.6 Variations des dynamiques longitudinales par cellules caractéristiques

La représentation de l'évolution des variations temporelles des caractéristiques de courant, basée sur des moyennes établies sur la colonne d'eau, a pu masquer certains phénomènes inhérents à la position dans la colonne d'eau. L'intérêt est donc ici de comparer les dynamiques à différentes profondeurs et détecter des divergences éventuelles de comportement des flux au dessus des deux appareils.

Nous allons dans ce traitement considérer deux cellules : une cellule profonde mais suffisamment loin du fond pour ne pas être perturbée, et une cellule proche de la surface. Nous retiendrons donc les cellules 8 en GI16, et 2 en GI17 entre -1.9 et -2.3m, ainsi que les cellules 12 en GI16, et 6 en GI17 entre -0.3 et -0.7m (Figure III.18).

Figure III 38: Variations temporelles des directions et vitesses de courant en GI16 et GI17 (cellule supérieure), Cd désigne la direction du courant et Cm la vitesse. Le seuil entre 0.37 et 0.45m/s correspond à la valeur théorique du seuil d'arrachement des sables.

La comparaison des variations temporelles des directions et des vitesses de courant dans la section haute de la colonne d'eau (Figure III.38) ou en profondeur (figure III.39), témoigne une nouvelle fois de vitesses supérieures en GI17 Seuls quelques épisodes dénotent notamment autour du 2-3 décembre 2005. Dans l'ensemble ces deux graphiques n'exposent pas, en termes de vitesses, de différences fondamentales avec la tendance dynamique générale. Les cellules de surface montrent des vitesses supérieures aux cellules en profondeur, confirmant les variations mises en évidence dans l'analyse de la répartition générale des vitesses de courant dans la colonne d'eau (figure III.28).

Figure III 39: Variations temporelles des directions et vitesses de courant en GI16 et GI17 (cellule inférieure) Le seuil entre 0.37 et 0.45m/s correspond à la valeur théorique du seuil d'arrachement des sables.

D'autre part les écarts de vitesses de courant entre cellule supérieure, et cellule inférieure, montrent les mêmes variations en GI17 comme en GI16, à savoir une diminution des écarts en période d'agitation et une augmentation en période de calme. Les deux premières journées de la campagne de mesure en sont une parfaite illustration. En d'autres termes, on assiste à une homogénéisation des vitesses dans la colonne d'eau en période d'agitation et une forte irrégularité en période calme (figure III.40).

Figure III 40: Variations des écarts de vitesses entre cellules de fond et de surface en GI16 et GI17

Des divergences apparaissent en revanche au niveau des directions de courant (figure III.41). Ce phénomène nouveau, qui n'avait pas été mis en évidence dans les paragraphes précédents, s'illustre par un flux très largement orienté perpendiculairement à la normale à la côte en profondeur (+90°/-90°) alors qu'en surface, le directions sont beaucoup moins homogènes, en particulier en période calme, et présentent parfois des résultantes relativement proches de la normale à la côte.

Figure III 41: Variations des écarts de direction entre cellule de fond et de surface en GI16 et GI17

En d'autres termes, les vitesses de courant moins importantes dans la fosse externe, en profondeur quelles que soient les conditions d'agitation présentent des directions homogènes à tendance principalement Est et ponctuellement Ouest (+90/-90°). En surface les vitesses de courant nettement supérieures présentent des directions moins homogènes et parfois proches de la normale à la côte.

Cet élément s'illustre par une intensité et une variabilité plus importante des composantes transversales du courant (figure III.42) en surface (Cmu (cel-s)), s'opposant à un flux en profondeur (Cmu (cel-f)) moins intense et à faible variabilité. Globalement les flux vers le large sont prédominants en surface, et quasiment nuls en profondeur. Il est important de signaler que le début de l'enregistrement, correspondant à un épisode de mistral, montre une forte composante transversale en surface, vers le large, alors que cette même composante en profondeur, s'oriente préférentiellement vers la côte (mais reste très faible). Entre le 2 et le 3 décembre le phénomène est inversé, à savoir que les vents, et en particulier la houle, arrivant avec un faible angle d'incidence à la côte se traduisent en surface par une composante transversale largement dirigée vers le rivage alors qu'en profondeur cette composante est orienté vers le large en particulier en GI16. Globalement les enregistrement dirigés vers le large.

Figure III 42: Variation temporelle des composantes transversales du courant en GI16 et GI17

Figure III 43: Variation temporelle des composantes longitudinales du courant en G116 et G117. Les valeurs positives indiquent une direction vers la côte et les valeurs négatives une direction vers le large

Les composantes longitudinales (Cmv) sur les deux appareils montrent en revanche une variabilité relativement homogène, en termes de direction, sur la cellule de fond (Cmv (cel-f)) comme sur la cellule de surface (Cmv (cel-s) (figure III.43), en revanche ils sont en général plus intenses en surface qu'en profondeur.

3.7 Conclusion partielle.

Nous venons de voir dans ce chapitre une présentation générale des dynamiques de courant et plus généralement des conditions d'agitations sur un plan longitudinal par comparaison des deux ADCP placés dans la fosse externe. Notre but était ici d'acquérir des informations sur d'éventuelles disparités de fonctionnement dynamique, sur les deux sites considérés, pouvant expliquer le gradient « morphologique » longitudinal mis en évidence dans le deuxième chapitre portant sur le suivi bathymétrique au droit de la digue.

Nous avons dans un premier temps réorienté l'ensemble des dynamiques par rapport à la normale à la plage et non par rapport au Nord magnétique afin de se placer dans un repère dont l'axe principal est l'axe du profil transversal à la plage passant par chacun des deux ADCP. Cette correction a concerné essentiellement les données de direction de houle et de courrant.

Ce chapitre a présenté ensuite les variations verticales (sur la colonne d'eau) du courant moyenné sur l'ensemble de la période, puis les variations temporelles des caractéristiques du courant résultant et de la houle. Enfin nous avons décrit l'étude des composantes transversales (U) et longitudinales (V) du courrant résultant. De cette analyse nous pouvons synthétiser plusieurs remarques :

Vitesses moyennes et maximales de la colonne d'eau.

Nous avons pu mettre en évidence une forte variabilité entre des valeurs moyennes et des valeurs maximales au dessus des deux appareils, démontrant l'importance dynamique des périodes d'agitation. Les vitesses maximales ont atteint parfois 1.6m.s⁻¹ et se sont montrées importantes également en profondeur (supérieures au seuil d'entraînement des sables défini à 0.4m/s), de l'ordre de 0.6 m.s⁻¹. Ce paragraphe a pu également dévoilé la présence de vitesses de courant résultant généralement plus intenses en GI17 (aval dérive) qu'en GI16 (droit de la digue).

Variations temporelles des courants résultants.

L'étude a porté ici sur la compilation de l'ensemble des données de courant résultant, moyennés sur une heure, durant la campagne. Sur cette thématique deux résultats essentiels sont ressortis. D'une part la confirmation de la présence de vitesses de courant supérieures enregistrées en GI17 et d'autre part une prépondérance de courant dirigé vers l'Est en fréquence et en intensité au dessus des deux appareils.

Variations temporelles des houles

Nous avons par la suite effectué une description des caractéristiques de houles (hauteur significative et direction de propagation) dans le but d'un couplage ultérieur avec les données de courant. En ce qui concerne les données de houle, il en ressort que GI16 enregistre un nombre plus important de houles supérieures à 0.75m, avec 47,7% des observations contre 44.4% en GI17. En revanche sur ce dernier, la part des houles inférieures à 0.75m est supérieures : 55.6% contre 52.3% en GI16. Le deuxième éléments mis en valeur dans ce paragraphe est une prédominance des houles se propageant vers l'Est durant 80% du temps.

Variations temporelles couplées de houle et de courant résultant

Après la description individuelle du courant résultant et de la houle au dessus des appareils nous avons confronté les deux données. De cette comparaison nous avons pu confirmer une nouvelle fois la prédominance en fréquence et en intensité des dynamiques dirigées vers l'Est (courant et houle). Nous avons démontré par la suite, une fréquence plus faible des fortes houles en GI17 mais des vitesses de courant plus élevées qu'en GI16 et une corrélation relativement significative, en GI16, entre vitesse de courant et hauteur de houle, qui ne se retrouve pas en GI17.

Le dernier point mis en valeur est l'existence d'une bonne corrélation entre la direction de propagation des vagues par rapport à la normale à la plage et l'orientation du courant en particulier en GI16, alors que GI17 se caractérise par la présence « d'anomalies » houles/courant plus importantes.

Etudes des composantes U et V de courant.

Dans ce paragraphe nous avons étudié les variations des composantes longitudinales (V) et transversales (U) constitutives du courant résultant. Après une rectification des vitesses, suite à la réorientation des flux par rapport à la normale à la plage, nous avons démontré qu'en aval dérive de la digue, GI17 présente des composantes de vitesses maximales V (longitudinales) plus marquée qu'en GI16. Ce dernier se démarque, quant à lui, par une prédominance des composantes de vitesses maximales U (transversales) largement dirigées vers le large.

Nous avons pu constater finalement que pendant les tempêtes, le courant longitudinal (prédominant), peut s'accompagner ponctuellement d'une réduction des vitesses transversales vers le large voire d'un courant vers la côte. En période de calme, en revanche, la composante

U vers le large redevient significative en GI17. Cependant signalons que les vitesses maximales atteintes par la composante U sont inférieures au seuil théorique d'entraînement des sédiments (0.6m/s). Ce « flux » transversal est donc théoriquement incapable de mobiliser à lui seul des sédiments. En revanche il peut contribuer à appliquer une impulsion pour des sédiments déjà en mouvement.

Ce chapitre a porté sur des moyennes appliquées à l'ensemble de la colonne d'eau. Les appareils étant positionnés à des profondeurs différentes nous allons maintenant étudier en détail les cellules de mesures communes.

Etudes des vitesses de courant à différente hauteur dans la colonne d'eau.

Cette étude, accès essentiellement sur la comparaison de deux cellules localisées à des profondeurs différentes dans la colonne d'eau, a apporté confirmation de tendances décrites dans l'appréhension des dynamiques de courant moyennées sur la colonne d'eau, et notamment l'existence de vitesses de courant plus intenses en GI17. Elle a surtout mis en évidence une hétérogénéité des variations des composantes transversales du courant entre, d'une part, cellules de fond et cellules et surfaces, et d'autre part, entre les deux appareils. En effet en surface cette composante semble influencée par les conditions météo marines (vent et houle) traduisant une variabilité importante de l'intensité des flux. En profondeur en revanche les flux sont moins intenses. GI16 se démarque par la fréquence des flux transversaux dirigés vers le large, qui néanmoins présentent des intensités faibles.

Les composantes longitudinales, au dessus des deux ADCP, se sont montrées plus homogènes en terme de direction ou d'intensité que ce soit en surface ou en profondeur.

Rappelons également que cette thèse s'était donnée comme objectif non seulement d'analyser les dynamiques longitudinales au droit et en aval dérive de la digue mais également les perturbations transversales. C'est ce que nous allons voir décrire dans la partie suivante.

4. Variations transversales de la houle et du courantl

Les dynamiques cross shore porteront sur la comparaison des données des mesures de houle et de courant sur un même profil transversal (profil GI16). Nous utiliserons les données du S4, placé dans la fosse interne et celles de l'ADV, dans la fosse externe, utilisant la même fréquence d'acquisition (2Hz)

Les courants cross-shore provoquent un déplacement de sédiment dans le profil sous l'action des vagues. L'une des conséquences directe de l'action de ces courants est le déplacement des barres sableuses. On parle également de transport à court terme, les variations morphologiques s'opérant, durant quelques heures, pendant les plus grosses tempêtes. Ce mode de transport n'est néanmoins pas forcement synonyme d'érosion et de recul du littoral : on assiste souvent à l'établissement d'un équilibre dynamique du profil qui évolue de façon cyclique. Malheureusement les conditions de mer rencontrées durant cette campagne ne nous ont pas permis d'encadrer chaque évènement météo marins par des mesures bathymétriques systématiques qui auraient pu être couplées aux relevés courantologiques. Ce chapitre se basera donc exclusivement sur une description et une comparaison des flux.

D'autre part, l'arrêt précoce de l'appareil situé au plus proche de la digue (S4 ADW) n'a pas permis d'acquérir de données pendant la plus forte tempête (2-3 décembre 2005). La période d'étude des dynamiques transversales s'échelonnera donc entre le 21 et le 30 novembre 2005.

Nous traiterons, dans cette partie, tout d'abord de la comparaison des vitesses résultantes. Nous aborderons ensuite la comparaison des caractéristiques de houle qui nous permettra par la suite d'effectuer un premier couplage courant houle. Enfin nous nous focaliserons sur la comparaison des composantes transversales et longitudinales du courant résultant pour chaque appareil.

4.1 Variations temporelles des vitesses de courant résultantes

Ce paragraphe décrit les caractéristiques des courants sur un profil transversal.

La représentation graphique des variations temporelles de la direction et de l'intensité du courant moyenné sur les deux appareils montre deux tendances relativement différentes (Figure III.44). Ces différences s'illustrent d'une part au niveau des vitesses de courant. Les enregistrements au niveau de la fosse interne (S4) montrent une forte irrégularité des vitesses. Ces dernières oscillent entre des intensités quasi nulles et des valeurs de 0.7m.s⁻¹ représentées par deux pics bien individualisés entre le 24 et le 25 novembre 2005. Deux autres pics nettement moins importants apparaissent ponctuellement entre le 21 et le 23 novembre 2005. Le reste des enregistrements se caractérise par des intensités faibles voire négligeables mis à part une légère reprise les 29 et 30 novembre 2005.

Figure III.44:Variations temporelles des caractéristiques du courant (direction Cd et intensité Cm)dans la fosse interne (S4) et dans la fosse externe (ADV)

Plus au large, dans la fosse externe, l'ADV témoigne de vitesses nettement plus homogènes qui n'excèdent pas 0.3 m. s⁻¹ (rappelons que la programmation de l'appareil visait à l'optimisation d'acquisition de cette tranche de vitesse). Les maxima enregistrés sont de moindre amplitude mais la fréquence des vitesses les plus élevées est plus importante que dans la fosse interne. Au final les vitesses faibles (< $0.2 \text{ m}.\text{s}^{-1}$) sont majoritaires au niveau des deux appareils et représentent un peu plus de 90% des observations (tableau III.13).

T 7 .	01		D (
Vitesses	Observ	ations	Pourcentages				
	Vitesses d	lu courant	Vitesses du	i courant			
	<0.2	>0.2	<0.2	>0.2			
S4 fosse interne	197	18	91.63	8.37			
ADV fosse externe	197	18	91.63	8.37			

Tableau III 13: Distribution des vitesses de courant au niveau du S4 et de l'ADV

Des divergences, entre les deux fosses, apparaissent également au niveau des directions de courant résultant (tableau III.14). Si le courant dominant est dirigé préférentiellement vers l'Est dans la fosse externe, avec 55 % des observations, (recoupant de façon cohérente les résultats trouvés sur l'ADCP placé dans la même unité morphologique), il est en revanche minoritaire dans la fosse interne (34%). Sur ce dernier, le courant vers l'Ouest

concentre en effet 66% des observations contre 45% sur l'ADV. Les enregistrements des vitesses de courant du S4 et de l'ADV se recoupent en revanche pour les vitesses supérieures à 0.2.m.s⁻¹, puisque sur les deux appareils elles correspondent majoritairement à un flux dirigé vers l'Ouest. Il est important de noter également que si le courant est principalement orienté perpendiculairement à l'axe normal à la côte (-90/+90°) dans la fosse externe, dans la fosse interne, les enregistrements montrent parfois (du 24 au 29 novembre) des écarts à la normale beaucoup plus faibles traduisant une dynamique à composante transversale bien marquée. Cependant ces épisodes s'accompagnent de vitesses de courant résultant faibles.

Direction	ТОТ	` AL	Observa	tions	Pourcentages			
			Seuil de v	vitesse	Seuil de v	vitesse		
	Observations	%	<0.2	>0.2	<0.2	>0.2		
S4 (-)	142.00	66.05	140	2	65.12	0.93		
S4 (+)	73.00	33.95	57	16	26.51	7.44		
ADV (-)	97.00	45.12	95.00	2.00	44.19	0.93		
ADV (+)	118.00	54.88	102.00	16.00	47.44	7.44		

Tableau III 14: Distribution des directions de courant au niveau du S4 et de l'ADV. Les valeurs (-) désigne un courant dirigé vers le cadran Ouest et les valeurs (+) vers le cadran Est

En définitive ce paragraphe a pu mettre en évidence un comportement dynamique relativement différent sur les deux unités morphologiques que sont les fosses internes (S4) et externes (ADV). Les caractéristiques de courant sur un profil transversal ont en effet montré des divergences marquées, en termes de vitesses, et de directions. Il est intéressant maintenant d'aborder les spécificités de la houle enregistrées au dessus des deux appareils.

4.2 Variations temporelles des caractéristiques de houle.

Nous prendrons en compte ici la hauteur significative de la houle mesurée au dessus des fosses. La figure III.45 met en évidence deux informations.

-une bonne correspondance des faibles hauteurs significatives de houle au niveau de la fosse interne (S4) et externe (ADV).

-l'existence d'un « seuil de saturation » de la hauteur significative de la houle au dessus du S4 estimé à un peu moins de 0.8m. Cette information montre l'existence d'un filtrage de la hauteur de la houle dans la zone du déferlement, autrement dit quelle que soit la hauteur de la houle au large, la hauteur significative de la houle mesurée au dessus du S4 (fosse interne) n'excèdera pas 0.8m. La figure III.45, nous en donne un bon exemple, avec les dates du 25 et

du 30 novembre où deux hauteurs de houles différentes mesurées au dessus de l'ADV se traduisent par une hauteur de houle mesurée au dessus du S4 ne dépassant pas 0.8m.

Figure III 45: Variations temporelles des hauteurs significatives de houle au dessus du S4 et de l'ADV. La ligne en pointillés représente le seuil de saturation de la hauteur significative de la houle mesurée au dessus de la fosse interne

Ces informations inhérentes aux caractéristiques de la hauteur de la houle posent maintenant la question de la vitesse du courant dans chaque fosse. Est-ce que la hauteur de la houle au dessus de chaque appareil détermine la vitesse du courant dans les deux fosses ? Autrement dit est ce qu'on assiste également à une saturation de la vitesse du courant proportionnellement à la hauteur de la houle. C'est ce que nous allons analyser dans le paragraphe suivant.

4.3 Variations temporelles du couplage houle/courant résultant.

La représentation des variations temporelles de la hauteur significative de la houle et des vitesses de courant illustrée par la figure III.46, témoigne d'une évolution relativement antagoniste entre hauteur significative de la houle dans la fosse interne et vitesse du courant au niveau du même appareil. La figure III.47 confirme cette tendance par un coefficient de détermination peu significatif ($R^2=0.1$) entre les deux paramètres. Cette même figure confirme la présence d'un seuil de saturation de la hauteur de la houle mais témoigne de l'existence de vitesses de courant surestimant largement la tendance proposée. En revanche cette comparaison révèle un autre phénomène : la corrélation, relativement représentative

(R²=0.65), entre hauteur significative de la houle au dessus de la fosse externe et vitesse de courant au niveau de la fosse interne (figure III.47).

Figure III 46: Evolution couplée de la hauteur significative de la houle et des vitesses de courant sur le S4 et l'ADV

Figure III 47: relation vitesse du courant au niveau du S4 (Cm) et hauteur significative de la houle (Hs) au dessus du S4 et de l'ADV

Finalement ces graphiques démontrent que la vitesse du courant dans la fosse interne est non pas liée à la hauteur de la houle au niveau de cette fosse mais à la hauteur et donc à l'énergie de la houle « au large ».

4.4 Variations temporelles des composantes de courant.

Nous avons vu dans les paragraphes précédents les caractéristiques générales de la houle et surtout du courant au dessus des deux appareils placés le long d'un profil au droit d'une digue. Il est intéressant maintenant d'analyser plus précisément les composantes longitudinales et transversales des vitesses de courant.

La figure III.48 présente les variations temporelles de la composante longitudinale du courant au niveau du S4 et de l'ADV. Au premier abord ces vitesses se caractérisent par des faibles valeurs, le plus souvent inférieures à 0.2m/s. Le flux est majoritairement dirigé vers l'Est et l'ADV enregistre des vitesses souvent supérieures. Seuls trois pics apparaissent au niveau du S4, le 23 novembre (1 pic dirigé vers l'Ouest) et le 25 novembre (2 pics dirigé vers l'Est). Ils sont particulièrement importants le 25 novembre 2005, avec des vitesses de l'ordre de 0.7m/s, soit supérieures au seuil d'entraînement théorique des sables (0.4m/s).

Quelques épisodes correspondant à des très faibles vitesses (26 au 28 novembre) présentent des directions de courant opposés.

Figure III 48: variations temporelles de la composante longitudinale du courant

L'analyse des composantes transversales révèle une dynamique intéressante (figure III.49). En effet alors qu'au niveau de la fosse externe la composante transversale oscille globalement (en tout cas entre le 21 et le 25 novembre et entre le 26 et le 28 novembre) autour de la valeur 0 elle présente une orientation principalement dirigée vers le large au niveau de la fosse interne (S4). Certes les vitesses sont très faibles, avec un maximum d'un peu plus de 0.1m/s, mais la tendance reste quasiment constante.

Deux périodes, correspondant rappelons le à des épisodes de houle plus « significatives », se démarquent, entre le 25 et le 26 novembre et le 30 novembre. Sur les deux appareils la composante transversale est dirigée vers le large

Figure III 49: variations temporelles de la composante transversale du courant. Les valeurs positives indiquent un flux vers le rivage et les valeurs négatives indiquent un flux vers le large.

Ce paragraphe a permis une fois de plus de mettre en évidence la prépondérance des dynamiques longitudinales sur notre secteur. Il a permis également d'identifier une composante transversale (dirigée vers le large) du courant largement représentée au niveau de la fosse interne. Ces résultats nous amènent donc à étudier les phénomènes de réflexion sur le secteur.

4.5 Variations des coefficients de réflexion sur la période d'étude

Nous avons pu au niveau de la fosse interne (S4) et externe (ADV), selon la méthode décrite précédemment (paragraphe 3.1.7), pour chaque burst (enregistrement à 2Htz pendant 20mn), entre le 21 et le 30 novembre, définir a_r et a_i ainsi que le coefficient de réflexion (Cr) correspondant.

Les résultats de l'étude des variations temporelles des coefficients de réflexion dans la fosse interne (S4) et externe (ADV), démontrent (figure III.50) pour 80% des observations, des valeurs supérieures au niveau du S4 (fosse interne). Les coefficients de réflexion, sont alors en moyenne de 10% (ponctuellement 20%) supérieurs à ceux retrouvés dans la fosse externe. Dans 20% des cas les valeurs calculées au niveau de la fosse externe sont supérieures d'en moyenne 6% (ponctuellement 20%). Finalement les coefficients de réflexion

s'échelonnent, sur la période investiguée, entre 17 et 45% de l'énergie incidente, au niveau de la fosse interne et entre 10 et 55% au niveau de la fosse externe.

Les valeurs de réflexion déterminant un caractère plus ou moins dissipatif du secteur ont été comparées à la hauteur significative de la houle au niveau de chaque appareil. Cette comparaison s'est faite dans un premier temps dans l'ordre chronologique des épisodes météo marins.

Figure III 50: variations temporelles des coefficients de réflexion et de la hauteur significative de la houle. La ligne en pointillés représente le seuil de saturation de la hauteur significative de la houle mesurée au dessus de la fosse interne

La figure III.50 permet de mettre en évidence quatre épisodes où la réflexion était prédominante au niveau de la fosse externe (22, 25, 29 et 30 novembre 2005). Trois de ces épisodes correspondent à des pics de hauteur significative de houle supérieure au niveau de la

fosse externe (22, 25 et 30 novembre 2005). Parmi ces épisodes deux (25 et 30 novembre 2005) présentaient des conditions de houle déferlante au niveau de la fosse interne. L'épisode du 29 novembre 2005, dans des conditions de houle faible (0.4 à 0.6m), attire notre attention par une réflexion plus marquée au niveau de l'ADV (fosse externe).

Au final les variations temporelles des coefficients de réflexion semblent en partie en relation avec les conditions de houle où le déferlement induit une dissipation relative par rapport à des houles non déferlantes. Cependant ce cas ne se vérifie pas systématiquement puisqu'au 30 novembre 2005, en fin de journée, malgré des conditions de houles déferlantes les coefficients de réflexion sont plus importants au niveau de la fosse interne.

Nous avons par la suite cherché une relation directe entre hauteur significative de la houle et coefficient de réflexion (figure III.51). La figure met en évidence la présence de coefficients importants (10 à 45%) dans le cas de faible houle.

Figure III 51: relation entre Hauteur Significative de la houle (Hs) et coefficient de réflexion (Cr) La ligne en pointillés représente le seuil de saturation de la hauteur significative de la houle mesurée au dessus de la fosse interne

Ces valeurs restent relativement constantes entre 20 et 45% dans la fosse interne pour des houles jusqu'à 0.8m. Dans la fosse externe ces coefficients compris entre 10 et 45% pour des houles de 0.1 à 0.8m, diminuent à 10 à 20% pour des houles de 1m. Les valeurs ré augmentent ensuite progressivement avec l'accentuation de l'amplitude de la houle.

Finalement ces deux graphiques permettent de mettre en évidence des coefficients de réflexion supérieurs au niveau de la fosse interne.

Ces résultats montrent que les coefficients de réflexions et l'amplitude de la houle n'entretiennent pas une relation de proportionnalité. Rappelons que nous avons simplement calculé des coefficients de réflexion au droit de la digue, une comparaison avec un site naturel sera effectuée pour déterminer si les phénomènes réflectifs sont ici exacerbés par l'ouvrage comme le laissait supposer l'analyse des profils bathymétriques.

5.Synthèse par l'analyse statistique des données météo marines

5.1 Synthèse des dynamiques générales sur un plan longitudinal

Cette synthèse portera essentiellement sur la comparaison des deux données enregistrées au dessus des ADCP à un pas de temps tri horaire calé sur les enregistrement anémométriques. Douze paramètres seront pris en compte., nous retiendrons un seuil de significativité à 0.01 (Table de Bravais Pearson) de 0.24.

• Les caractéristiques liées aux au niveau de l'eau

-Le setup au dessus des appareils (SETUP)

-Le gradient de pression atmosphérique calculé entre Montpellier et Toulon (GP MTP_TL) définissant le sens des flux atmosphériques généraux.

• Les caractéristiques de houles :

-la hauteur significative (Hs),

-la direction de propagation (Dp),

- la période (T)

-l'énergie de la houle (E) définie par $E = \frac{1}{8}\rho gHs^2$.

Avec
$$\rho = 1024$$
, g = 9.81

• La caractéristiques de courant moyen au dessus des deux appareils :

-l'intensité du courant résultant (Cm),

-la direction du courant résultant (Cd),

-l'intensité de la composante transversale (Cmu) et longitudinale (Cmv) du courant.

-Les caractéristiques de vent : la direction (Vd) et l'intensité (Vm).

Figure III 52: résultats de l'ACP portant sur l'analyse de s dynamiques longitudinales (valeurs moyennes sur la colonne d'eau).

La matrice de corrélation correspondant au croisement de l'ensemble de ces variables et l'application de la méthode ACP a permis d'individualiser dans un premier temps la part d'explication de la variance de chaque axe (figure III.52)

Le tableau reportant l'inertie de chaque axe factoriel permet de déterminer un axe principal qui concentre respectivement 76.7 (GI17) et 79.8% (GI16) de l'explication de la variance des paramètres (figure III.52).

AXE 1		Gradient de pression		Н	OULE			COURA	VENT			
	SETUP	GP (MTP_TL)	Hs	Тр	Е	Dp normalisée	СМ	Cd normalisée	Cmu	Cmv	Vm (m/s)	Vd
GI16	0.16	-0.08	0.8	0.1	0.86	0.36	0.75	0.57	-0.5	0.7	0.68	0.12
GI17	0.01	0.82	-0.34	-0.31	-0.4	0.36	0.26	0.73	-0.84	0.85	-0.46	0.07

Tableau III 15: tableau des corrélations sur l'axe 1

Le tableau des corrélations relatives à l'axe 1 a permis d'identifier certaines tendances (Tableau III.15) :

En GI16 l'axe 1 propose une bonne corrélation des données de houle et courant. Cet axe met en évidence la prédominance des caractéristiques de houle (hauteur et donc énergie) dans l'explication des dynamiques de courant.

En GI17 en revanche deux axes majeurs se démarquent. Le premier est relatif aux vitesses de courant et le deuxième est relatif aux caractéristiques de houle. L'absence de corrélation évidente entre ces deux axes démontre un fonctionnement séparé des dynamiques de houle et de courant au niveau de GI17.

Cette première analyse statistique portant sur la confrontation des caractéristiques générales d'agitation (houle, courrant moyen sur la colonne d'eau) a permis de mettre en évidence deux sites au fonctionnement relativement différent. En effet deux comportements s'opposent, en GI16 les variations des caractéristiques de houle sont bien corrélées aux fluctuations en direction et en intensité du courrant. En revanche en GI17 les deux paramètres semblent évoluer, pris dans leur globalité, de façon indépendante.

Nous allons maintenant à partir de l'étude statistique portant sur les variations de ces caractéristiques à différentes profondeurs dans la colonne d'eau, analyser les variations locales en surface et en profondeur des paramètres de courant.

5.2 Synthèse des dynamiques générales par cellules

Sur le même principe que le paragraphe précédent, seize paramètres seront pris en compte. Nous retiendrons un seuil de significativité de (table de Bravais Peason) de 0.25

• Les caractéristiques de houles :

-la hauteur significative (Hs),

-la direction de propagation (Dp),

-la période (T)

-l'énergie de la houle (E).

• Les caractéristiques de courant pour chaque cellule considérée, la cellule profonde sera notée « f » et celle de surface « s ». Les données prises en compte sont

-la direction du courant résultant (Cd-f et Cd-s) son intensité (Cm-f et Cm-s)

-les écarts constatés entre cellule de fond et cellule de surface (Ecartype Cd et Ecartype Cm)

-les composantes du courant résultant pour chaque cellule : la composante transversale (Cmu-f et Cmu-s) et la composante longitudinale (Cmv-f et Cmv-s)

• Les caractéristiques de vent seront également intégrées à cette analyse:

-la direction (Vd)

-l'intensité (Vm).

L'intérêt repose ici sur la nécessité de comparer le comportement dynamique général à différents niveaux de la colonne d'eau sur les deux appareils. Ces dynamiques de courant seront comparées entre elles et confrontées aux données météo marines dans le but de caractériser le fonctionnement en surface et en profondeur sur chacun des deux sites.

La matrice de corrélation correspondant au croisement de l'ensemble de ces variables et l'application de la méthode ACP a permis d'individualiser dans un premier temps la part d'explication de la variance de chaque axe (figure III.53) et de retenir les deux premiers axes pour chacun des deux sites (figure III.53).

Figure III 53 : résultats de l'ACP portant sur l'analyse de s dynamiques longitudinales (valeurs moyennes par cellules)

		COURANT															
A	XE	HOULE			Courant résultant						Composantes U et V du courant				VENT		
1	et 2	Hs	Тр	Е	Dp norm alisée	Cd (cel-f)	Cd (cel- s)	Ecart type Cd	Cm (cel-f)	Cm (cel-s)	ecart type Cm	Cmu (cel-f)	Cmu (cel- s)	Cmv (cel-f)	Cmv (cel- s)	Vm (m/s)	Vd
GI16	Axe 1	0.86	0.09	0.81	0.34	0.75	0.73	-0.7	0.77	0.63	-0.39	-0.82	0.31	0.86	0.81	0.57	0.12
	Axe 2	-0.33	-0.56	-0.42	0.6	0.5	0.4	0.08	-0.45	-0.09	0.58	0.08	-0.6	0.34	0.37	0.23	0.01
GI17	Axe 1	0.92	0.05	0.87	-0.12	-0.01	0.18	-0.07	0.6	-0.57	-0.04	0.6	-0.09	-0.06	-0.64	0.28	0.05
0117	Axe 2	-0.48	-0.17	-0.51	0.18	0.68	0.04	0.66	-0.25	0.08	-0.42	-0.58	0.67	0.67	0.38	0.23	0.01

Tableau III 16: tableau des corrélations sur les axes 1 et 2

L'établissement d'une matrice des corrélations pour chaque axe a permis de définir pour GI16 (droit de la digue) (tableau III.16):

La hauteur et l'énergie de la houle, la direction du courant en surface et en profondeur, la vitesse du courant en surface et en profondeur, composante V du courant au fond et en surface et U du courant en surface et la vitesse du vent sont corrélées positivement.

On observe en revanche une évolution inverse des écarts (fond surface) de vitesses et direction de courant, composante U au fond.

En GI16, l'augmentation de la houle et de son énergie, liée à une augmentation du vent, génère sur notre période d'étude une augmentation des vitesses de courant résultant (au fond et en surface) dirigé préférentiellement vers l'Est. L'écart entre les valeurs de fond et de surface se réduit (corrélation négative). Cette dynamique (houle+courant+vent) se traduit par une augmentation des composantes longitudinales du courant dirigé vers l'Est, en surface et en profondeur ainsi que le développement de la composante transversal vers le rivage en surface. En revanche au fond cette même composante de courant est dirigée alors vers le large.

L'établissement d'une matrice des corrélations pour chaque axe a permis de définir pour GI17 (aval dérive) (tableau III.16) :

Sur l'axe factoriel 1, la hauteur de la houle, son énergie, la vitesse du courant au fond avec composante U dirigé vers le rivage montre une corrélation positive. En revanche les corrélations inverses entre les variables concernées, témoignent d'une diminution de la composante longitudinale de courant en surface couplé avec une orientation de la composante vers l'Ouest.

L'axe factoriel 2, démontrerait que quand la hauteur de la houle et son énergie diminue, se produit une augmentation des divergences de direction de courant entre fond et surface et une

orientation de la composante longitudinale de courant vers le large au fond et vers la côte en surface. La composante longitudinale de courant est, quant à elle, largement dirigée vers l'Est.

Finalement, en résumé, l'analyse statistique permet de montrer en GI17 que l'augmentation de la houle et de son énergie, liée à une augmentation du vent, génère sur notre période une augmentation des vitesses de courant résultant au fond de la colonne d'eau. On assiste aussi à une augmentation de la composante transversale (U) dirigée vers le rivage. En revanche lorsque la houle et son énergie diminuent, se produit une augmentation des divergences de direction de courant entre le fond et la surface. La composante transversale du courant se dirige alors vers le large au fond et vers la côte en surface.

Ces résultats témoignent d'un fonctionnement relativement bien identifié en GI16 où l'augmentation de l'agitation se traduit par une augmentation de l'ensemble des vitesses de courant. Les composantes transversales de courant montrent au fond la prédominance de flux vers le large alors qu'en surface il s'oriente vers la côte. En GI17 le fonctionnement est beaucoup plus complexe, il semble que les variations de l'agitation agissent essentiellement sur le fond avec à l'inverse de GI16 un flux dirigé vers la côte en période de tempêtes et dirigé vers le large en période calme.

Cet élément laisse entrevoir une augmentation des phénomènes réflectifs peut être mêmes de la présence de courants de retour plus important en GI16 pendant les épisodes d'agitation. En revanche en GI17 si la relation houle/ courant résultant est faiblement pertinente, elle le devient avec les composantes transversales.

5.3 Synthèse des variations générales cross shore

Le but est ici de comparer la houle et le courant sur un axe strictement transversal afin d'identifier une quelconque influence de la digue. Nous n'intégrerons pas dans cette analyse les données de vent mesurées aux saintes Maries de la Mer afin d'affiner les séries de données de 3 heures à 1 heure. Nous intégrerons dans cette analyse le coefficient de réflexion calculé au niveau de chaque appareil.

Dix paramètres seront pris en compte pour chaque appareil, nous retiendrons un seuil de significativité (table Bravais Peason) de 0.24.

- Les caractéristiques de houles :
 - -la hauteur significative (Hs),
 - -la direction de propagation (Dp),
 - -la période (T)
 - -l'énergie de la houle (E).
 - -La fréquence de la houle :Fpic, Fmin, Fmax.
 - -Les coefficients de réflexion (Cr)
- Les caractéristiques de courant.
 - -la direction du courant résultant (Cd)
 - -l'intensité du courant résultant (Cm)
 - -la composante transversale (Cmu)
 - -la composante longitudinale (Cmv)

La matrice de corrélation correspondant au croisement de l'ensemble de ces variables et l'application de la méthode ACP a permis d'individualiser dans un premier temps la part d'explication de la variance de chaque axe (Figure III.54) et de retenir les deux premiers axes pour la fosse interne (S4) et le premier pour la fosse externe (ADV) (figure III.54).

AXE	1 et 2	Hs	Е	Тр	Dp	Cd	Cm	Cmv	Cmu	Cr	fpic	fmin	fmax
ADV	Axe 1	0.66	0.61	0.73	0.71	0.51	0.41	0.69	-0.47	-0.18	0.8	0.83	0.83
S4	Axel	0.71	0.7	0.76	0.7	0.23	0.2	0.18	-0.55	-0.48	0.82	0.82	0.82
54	Axe2	0.29	0.32	0.19	0.06	0.4	0.66	0.64	-0.39	0.31	-0.33	-0.33	-0.33

Tableau III 17: Tableau des axes factoriels sélectionnés et corrélations associées

Le tableau des axes factoriels permet de montrer (tableau III.17):

Au niveau de la fosse externe (ADV), une corrélation positive entre les caractéristiques de houle (Hauteur significative, énergie, période et direction de propagation). Autrement dit, les fortes houles se caractérisent par une énergie, une période (et donc une fréquence) importantes ainsi qu'un sens de propagation vers l'Est. Les caractéristiques du courant présentent également des corrélations significatives entre elles mais également avec la houle.

En d'autres termes, les fortes houles se propageant vers l'Est génèrent des vitesses de courant accrues et dans la même direction. La composante longitudinale du courant (Cmv) présente en particulier une bonne corrélation positive au sein de l'axe factoriel 1. En revanche la composante transversale du courant (Cmu) montre une corrélation négative, c'est-à-dire que lorsque les paramètres de houles augmentent, la composante transversale du courant montre un accroissement de la vitesse des flux vers le large. Nous n'avons trouvé aucune corrélation significative avec les coefficients de réflexion.

Au niveau de la fosse interne (S4), sur le premier axe on retrouve une bonne corrélation positive entre les paramètres de houle (Hs, E, Tp et donc fréquence, Dp,). En revanche les caractéristiques du courant résultant sont faiblement corrélées. Rappelons que nous avions montré précédemment, qu'effectivement le courant résultant au niveau de la fosse interne présentait une meilleure corrélation avec les paramètres de houle mesurés au niveau de la fosse externe (en particulier l'énergie). En revanche on retrouve une corrélation négative relativement correcte avec la composante transversale du courant. Ici comme dans la fosse externe, l'augmentation de l'énergie de la houle au dessus de l'appareil génère une accentuation des vitesses de courant vers le large. De plus nous observons ici la présence d'une tendance, illustrée par une corrélation négative, concernant les coefficients de réflexion. C'est-à-dire qu'une augmentation de la hauteur de la houle au niveau de la fosse interne génère une diminution de la réflexion. Rappelons que cette relation ne s'applique que jusqu'à un seuil de 0.8m d'amplitude de la houle.

L'axe 2, propose une bonne corrélation positive entre vitesse du courant résultant et vitesses de la composante longitudinale du courant. Cette relation met simplement en évidence la prédominance de la composante longitudinale du courant dans la détermination des vitesses de courant résultant.

Finalement ce paragraphe permet de définir une constante sur les deux sites, à savoir que l'augmentation des composantes transversales du courant résultent d'une augmentation des caractéristiques de houle (Hs, E, et période). Au niveau de la fosse externe les variations d'intensité du courant résultant sont également étroitement liées aux variations de la houle. Cette relation ne se retrouve pas au niveau de la fosse interne (S4), où, nous l'avons vu plus haut, les vitesses de courant sont sensiblement corrélées à la houle au « large » mesurée au niveau de la fosse externe.

Nous avons trouvé que de faibles relations mettant en évidence les coefficients de réflexion. Au niveau de la fosse interne (S4) la tendance semble démontrer une augmentation

de la dissipation avec l'augmentation de la houle, jusqu'à une amplitude seuil de 0.8m. En revanche au niveau de la fosse externe (ADV) la réflexion ne présente aucune relation linaire avec les paramètres dynamiques retenus. On peut donc se poser la question du rôle de la morphologie elle-même et indirectement de la présence de l'ouvrage dans la détermination de ces valeurs de réflexion. Nous aborderons ce point un peu plus loin.

5.4 Conclusion des analyses statistiques

Nous baserons nos conclusions sur les résultats mis en évidence par l'analyse statistique des données de houle et de courant. Nous mettons en évidence :

-La présence d'un fonctionnement relativement bien identifié sur le profil en GI16 (profil au droit de la digue) où l'augmentation de l'agitation se traduit par une augmentation de l'ensemble des vitesses de courant. Pendant les épisodes les plus forts, les composantes transversales de courant de la fosse externe, montrent au fond la prédominance de flux vers le large alors qu'en surface il s'oriente vers la côte. Dans la fosse interne au pied de la digue, les vitesses de courant apparaissent liées à l'agitation au « large ». En période d'agitation, la composante transversale du courant vers le large est accentuée, mais les vitesses restent faibles comparativement aux vitesses longitudinales. Les coefficients de réflexions calculés dans les fosses internes et externes ne montrent pas de relation linéaire évidente avec les conditions d'agitation. Les résultats de l'analyse statistique semblent néanmoins présenter une augmentation de la dissipation avec l'augmentation de la houle.

-Sur le profil « naturel » en aval dérive (GI17) le fonctionnement est beaucoup plus complexe. Ici, les vitesses de courant plus fortes qu'au droit de la digue, n'ont pas montré de relation linéaire directe avec les conditions d'agitation. De plus, il semble que les variations de l'agitation agissent essentiellement sur le fond, avec à l'inverse de GI16, un flux dirigé vers la côte en période de tempêtes et dirigé vers le large en période calme.

Nous allons maintenant nous focaliser sur l'étude des deux phénomènes relativement bien individualisés, décrits dans le chapitre précédent, à savoir :

-La présence de vitesses de courant systématiquement supérieures en GI17 (dynamiques longitudinales).

-Le développement des composantes transversales de courant en GI16 avec l'augmentation de l'agitation, nous chercherons des réponses dans la comparaison des phénomènes réflectifs avec une plage naturelle.

6. Interprétation du fonctionnement dynamique du site de Véran

6.1 Dynamiques longitudinales

Les résultats des mesures courantologiques entre le profil au droit de la digue (GI16) et le profil dit « naturel » en aval dérive de l'ouvrage (GI17) ont mis en évidence:

-La présence quasi systématique de vitesses de courant plus importantes en GI17 qu'en GI16 quel que soit la profondeur dans la colonne d'eau ou le sens du transport dominant.

-La présence d'une bonne corrélation, entre intensité/direction de houle et intensité/direction du courant en GI16, qui ne se retrouve pas en GI17.

L'intérêt est maintenant de déterminer si ces divergences permettent d'expliquer le gradient « morphologique » mis en évidence dans le premier chapitre de cette partie portant sur le suivi bathymétrique au droit de la digue. Nous avons donc dans ce chapitre, tenté de confronter ces résultats à certaines théories mises en évidence dans la littérature, mais également à des paramètres locaux.

6.1.1 Le rôle de la pression atmosphérique et le setup

Nous avons confronté nos résultats à ceux de Battjes (2005) et Putrevu (1995). Les auteurs montrent, en effet, que le courant dans la zone du déferlement n'est pas seulement, et directement lié à la houle, mais à un gradient de pression atmosphérique et/ou à une différence de setup entre deux profils qui induirait un écoulement selon le principe suivant lequel une augmentation brutale de la pression atmosphérique génère un abaissement de la surface, alors qu'une diminution ponctuelle du gradient de pression a l'effet inverse. Ce phénomène et celui de la différence de setup rejoignent le même principe, à savoir « qu'à un endroit le niveau de l'eau est plus haut ».

Un gradient de pression est difficilement observable sur une échelle spatiale de 2 km correspondant à notre site d'étude, Battjes (2005) montre que ce phénomène peut s'appliquer

en revanche sur une échelle spatiale plus large. Il peut, de ce fait, difficilement justifier une véritable différence de hauteur d'eau. Généralement on associe une variation verticale de 1cm pour une variation instantanée de pression de 1hpa. De plus nous avons vu que la variation maximale de pression était d'une dizaine d'hecto pascal entre Sète et Toulon au 2 décembre 2005. Cette variation aurait entraîné une variation instantanée du plan d'eau de 10cm sur 200km. Cette théorie ne peut donc pas expliquer les résultats de nos mesures.

En revanche, il est possible sur notre site qu'une différence de valeur de set up puisse exister. Nous présentons dans la figure III.55 les valeurs de setup, calculées à partir des variations du niveau de l'eau déduites des amplitudes de houle (ADCP) et de marées (SHOM), au dessus de chaque ADCP ainsi que la différence entre les deux. Une différence positive indique un niveau d'eau plus haut en GI17 et un niveau plus bas en GI16, qui pourrait traduire un courant globalement vers l'Est, et vers l'Ouest dans le cas inverse. La comparaison des deux sites permet d'identifier qu'en GI17 l'élévation verticale du plan d'eau est globalement plus haute mis à part en début de période (du 21 au 23 novembre 2005) et le 1 décembre 2005. En tenant compte du principe énoncé plus haut, trois situations de courant se présenteraient.

Figure III 55: setup au dessus des deux ADCP

En début de période un courant dirigé vers l'Ouest jusqu'au 23 novembre, puis vers l'Est entre le 23 et le 1 décembre 2005. Le 1 décembre une inversion se produit, et à partir du 2 décembre un courant à tendance plutôt Est s'établit. Ces résultats simplifient la tendance réelle mesurée au dessus des appareils en ce qui concerne les directions de courant. De plus, nous n'avons pu mettre en évidence dans l'analyse statistique aucune corrélation significative de la hauteur du plan d'eau au dessus des appareils avec les dynamiques de courant (direction et intensité).

L'ensemble de ces observations permet d'avancer que la différence de setup au dessus des deux ADCP n'est pas à l'origine sur notre site d'étude des variations de direction de courant.

6.1.2 Le rôle des conditions de houle à la côte

Nous avons dans ce paragraphe pris en compte les conditions de houle (amplitude, angle d'incidence à la côte) dans l'explication du différentiel de vitesse de courant entre les deux appareils. Nous rappellerons tout d'abord que l'analyse statistique précédente avait montré en GI16 que les variations des caractéristiques de houle étaient bien corrélées aux fluctuations en direction et en intensité du courrant. En revanche en GI17 les deux paramètres semblent évoluer, pris dans leur globalité, de façon indépendante. A première vue donc les vitesses de courant plus importantes en GI17 ne semblent pas être expliquées par les caractéristiques de houle. Cependant cet élément méritait d'être approfondi à partir de l'utilisation de la formule empirique de calcul de vitesse de courant de Longuet Higgins (1970) et Komar et Inman (1970), prenant en compte l'angle d'incidence de la houle à la côte et de son amplitude.

$$V_b = K_4 u_m \sin \alpha_b$$

Avec

- $K_4 = 2.7$ (Komar et Inman 1970) coefficient empirique

$$u_m = \left(\frac{\gamma g H_b}{4 \bullet 1.416}\right)^{1/2}$$

- γ paramètre adimensionné défini comme le rapport entre la hauteur des vagues H et la profondeur d'eau locale d, nous prendrons ici 0.4 (cf tableau III.2)

-*g*=9.81

 $-\alpha$: angle d'incidence de la houle à la côte.

Nous avons donc, dans un premier temps, testé l'applicabilité de cette formule empirique de calcul de vitesses de courant, en comparant les vitesses calculées théoriquement à partir des données de houle enregistrées au dessus de chacun des appareils, et les vitesses mesurées par les ADCP. La formule utilise les caractéristiques de la houle déferlante, nous avons donc sélectionné, suivant l'évaluation de la hauteur de la houle au déferlement en fonction de la profondeur et du paramètre γ (.tableau III.2), les relevés pour lesquels les houles étaient supérieures à 1.68m en GI16 (droit de la digue) et 1.72m en GI17 (profil naturel)

Figure III.56 : comparaison des vitesses mesurées et calculées

Les faibles corrélations entre les vitesses de courant mesurées (ADCP) et des vitesses calculées à partir des formules de Longuet Higgins (1970) et Komar et Inman (1970), ne nous permet pas : (1) d'utiliser cette formule pour notre site et (2) de conclure à l'action unique des caractéristiques des houles dans la génération des vitesses de courant dans la fosse externe de chacun des profils. Ceci est d'autant plus vrai que nous avons comparé uniquement des conditions de houles déferlantes, or nous avons vu qu'un courant significatif peut se développer en conditions de houles non déferlantes. Nous rappelons que la formule est largement utilisée en ingénierie côtière, mais cette approche « globale » est censée représenter la vitesse du courant pour l'ensemble de la zone du déferlement. Nos mesures localisées dans la fosse, très différentes des calculs, soulignent aussi la complexité des processus et la difficulté à les modéliser.

Nous nous appuierons donc sur les résultats de l'analyse statistique précédente pour rechercher l'influence de la houle uniquement sur le profil GI16, ce qui implique qu'un autre facteur intervient dans l'explication du différentiel de vitesses entre les deux ADCP.

6.1.3 Le rôle des conditions morphologiques locales

Nous venons de voir que les paramètres dynamiques abordés jusqu'à présent ne suffisent pas à eux seuls à expliquer des différences de vitesses de courant plus importante entre le profil « à digue » et le profil « naturel ». Nous émettons donc la possibilité d'un effet de site lié à des différences de morphologies. Nous avons donc réalisé un bilan de quantité d'eau traversant les profils. Nous calculons d'abord la section mouillée à partir du logiciel BMAP (beach Mophology Analyses Package) considérant le profil entre la ligne de rivage et la profondeur de fermeture déterminée à -8m (Partie I). (Figure III.57). Cette opération a été effectuée sur des profils avant (1997) et après l'édification de la digue (2005).

Figure III 57: détermination de la surface mouillée pour chaque profil

Le tableau III.18, montre qu'en 1997 la même surface mouillée se retrouvait relativement sur les deux profils (respectivement 1190m² et 1064m²), alors qu'en 2005 ces surfaces ont augmenté et affichent des différences notables. Cependant alors que GI17 voit sa surface augmenter d'un facteur 1.56, sur GI16 elle est multipliée par 2.41, soit un différentiel de 1.37. Finalement on retrouve en 2005 une surface mouillée plus « étroite » en GI17 qu'en GI16, illustrant le phénomène mis en évidence dans l'analyse morphologique, à savoir une érosion générale sur le secteur, et accentuée en GI16.

		Surface mouillée GI17	Surface mouillée GI16	rapport GI16 / GI17
1997	Total m ²	1190.2	1064.78	0.89
	m²/m	2.71	2.42	0.89
2005	Total m ²	4237.03	5828.95	1.37
	m²/m	4.25	5.86	1.37
Rapport surface 2005 / 1997		1.56	2.41	

Tableau III 18: calcul des surfaces mouillées en GI16 et GI17 pour 1997 et 2005

La réduction de cette surface pourrait contribuer à faire accélérer le courant en GI17. En effet l'analyse des composantes longitudinales des vitesses de courants moyens, dans la fosse externe, sur toute la période d'étude, sur la colonne d'eau a donné les vitesses moyennes suivantes

$$V_{\text{moy GI16}} = 0,11 \text{ m.s}^{-1} \text{ et}$$
 $V_{\text{moy GI17}} = 0,19 \text{ m.s}^{-1}$

Nous avons ensuite, à partir des valeurs de surface mouillée en 2005, et des vitesses moyennes de courant mesurées dans la fosse externe de chaque profil, effectué un bilan des quantités d'eau passant par chaque profil suivant la formule:

$$Q = S \times V_{moy}$$

Q= quantité d'eau en m³/s S=surface en m² V=vitesse moyenne en m.s⁻¹

En GI17 les quantités d'eau ont pu être évaluées à 805 m³/s et en GI16 à 640 m³/s en 2005.

Notons que la présence de surface mouillée plus importante en GI16, est directement corrélée à la présence de la digue. Les figures III.58 et III.59, nous montrent en effet une augmentation très nette de la profondeur, à distance égale par rapport à la ligne de rivage (figure III.59) ou entre fosses respectives (Figure III.58), en GI16 par rapport à GI17 en 2005. Ce phénomène n'était pas effectif avant la construction de la digue en 1998.

Nos résultats sont difficilement comparables à ceux obtenus par Dean (1976) ou Miles et al (2001) notamment. Ces auteurs démontrent en effet une accentuation des courants longitudinaux en pied de digue. Le premier démontre, dans le cadre d'un « confinement »,

4 2 Digue 0 400 200 600 800 1000 Profondeur (m) -6 GI17 (2005) -8 GI16 (2005) -10 -2 -1.5 Diminution de entre les deux profils (m) -1 la profondeur -0.5 Ecart de profondeur 0 0.5 1 1.5 N Augmentation de 2 la profondeur mananin 2.5 3 3.5 0 200 400 600 800 1000 Distance (m) Ecart profondeur GI16/GI17 (1997) Ecart profondeur GI16/GI17 (2005)

réduction de la zone du déferlement par l'implantation d'une digue longitudinale, que les flux longitudinaux s'accélèrent.

Figure III 58: comparaison de la surface mouillée avant et après l'implantation de la digue sur GI17 et GI16 Profils calés sur les fosses respectives

Les études de Miles et al., (2001) confirment ce phénomène à partir de mesure courantologiques, et démontrent que les vitesses obtenues en pied d'ouvrage sont plus intenses que celles obtenues sur un secteur non aménagé. Nos résultats relatifs aux courants longitudinaux, eux, portent sur une section morphologique éloignée du rivage (350m) conditionnant certainement une atténuation de l'effet de la digue sur nos mesures (dans le sens longitudinal). Nos résultats ne sont donc pas comparables à ceux de Miles et al., (2001). De plus le protocole expérimental mené pour cette étude, a été mis en place dans le but

d'obtenir des données relatives aux courants au droit et en aval dérive de la digue en conditions moyennes annuelles c'est-à-dire prenant en compte le sens du transport sédimentaire dominant sur le secteur (vers l'Ouest). Or nous avons mis en évidence dans les paragraphes précédents une prépondérance des flux dirigés à l'opposé du sens du transport dominant. Nous ne pouvons donc pas conclure sur les effets de la digue en aval dérive.

Figure III 59 : comparaison de la surface mouillée avant et après l'implantation de la digue sur G117 et G116. Profils calés sur les lignes de rivages respectives

Cependant, nos résultats permettent d'insister sur les effets indirects de la digue sur les vitesses de courant (effet feed back). Sa présence induit des modifications bathymétriques (accentuation de la surface mouillée liée à l'augmentation des pertes sédimentaires), modifiant de ce fait, les dynamiques de courant au droit et en aval dérive. Les vitesses de
courant plus intenses en GI17 seraient donc, suivant ce principe indirectement provoqué par la présence de l'ouvrage.

En revanche nous avons pu mettre en évidence dans le chapitre II de cette partie, que les phénomènes d'érosion étaient accentués au droit de la digue, il semblerait donc que les vitesses de courant longitudinal ne soient pas à l'origine de ce phénomène, puisqu'en GI16 les vitesses moyennes sont moindres. Un autre facteur intervient donc dans l'évolution bathymétrique du secteur.

6.1.4 Comparaison des vitesses de courant dans la fosse interne

Aux vues des résultats des paragraphes précédents, il était important également de comparer les vitesses de courant dans la fosse interne, afin d'étudier une section morphologique plus proche de la digue sur un plan longitudinal.

Compte tenu du fait que nous ne disposions pas de mesures courantologiques au niveau de la fosse interne sur le profil GI17, la méthode a reposé, ici, sur la comparaison de notre expérience (Site de Véran) avec celle menée par Certain et al (2005) dans le Languedoc sur la plage « naturelle » à l'Ouest de Sète (domaine microtidal).

Les deux sites se sont avérés morphologiquement comparables (Figure III.59). Effectivement le site Languedocien présente une plage émergée caractérisée par sa faible extension transversale de 20 à 50m. Il est sujet à un recul du rivage évalué à -1m.an⁻¹. La plage immergée quant à elle se caractérise par un système de barres et de fosses type « Dissipatif and Longshore-Bar-Trough » selon Wright and Short (1984). La pente est de l'ordre de 1°, le grain moyen décroît de 0.32mm à 0.13mm dans la basse plage immergée (Certain 2002) et la profondeur de fermeture a été définie à approximativement à -7m.

En termes de dynamiques le site se caractérise par une Hauteur significative (Hs) moyenne des vagues, inférieure à 2m, dont 30% des valeurs inférieures à 1m avec une direction de propagation comprise entre le 140 et le 220 (Sud Est à Sud Ouest).

Seulement 2% des vagues présentent une hauteur significative supérieure à 4m. Elles sont associées à une direction de propagation Sud Est à Est avec une période comprise entre 5 et 10 secondes.

La campagne de terrain menée, dans le cadre du PNEC, entre le 1 novembre et le 1 décembre 2000 a permis d'instrumenter deux profils de plage transversaux (Certain et al., 2005). Un de ces deux profils était équipé de trois courantomètres de type S4. Les deux

premiers S4 ont été positionnés respectivement dans la première et la deuxième fosse de lévigation et le troisième au niveau du glacis d'avant côte. Le protocole expérimental (figure III.60) est donc comparable à nos mesures réalisées à Véran.

Figure III 60: Comparaison du protocole expérimentale et du profil de Sète et du profil GI16

Par cette démarche nous cherchons à déterminer si un courant longitudinal plus fort se développe au droit de la digue dans la fosse interne. Afin d'obtenir des données comparables nous avons confronté hauteur de houle et vitesse de courant sur les deux sites. Nous avions vu que les vitesses de courant dans la fosse interne étaient corrélées sur notre site non pas à l'amplitude (et donc l'énergie) de la houle au niveau de la fosse interne mais de son amplitude au « large » (figure III.47). Nous nous baserons donc sur cette donnée pour comparer les vitesses dans la fosse interne sur chacun des deux sites.

La figure III.61, met en évidence la présence de vitesses de courant (faibles) identiques dans chacune des fosses internes, pour des faibles hauteurs de houle. Ces vitesses augmentent avec le déferlement de la houle (tiret rouge à Véran) puis s'accentuent rapidement sur les deux sites avec l'augmentation de l'amplitude de la houle au « large ». Notons que, globalement, les vitesses atteintes à Sète sont supérieures à celles mesurées à Véran, à hauteur de houle similaire. Finalement nous n'assistons pas à une accentuation des vitesses de courant longitudinal en pied d'ouvrage comme pouvaient le constater Miles et al., (2001) ou Plant et Griggs (1992).

Figure III 61 : relation entre hauteur significative de la houle(Hs) mesurée au dessus de la fosse externe et la vitesse de courant (Cm) dans la fosse interne à Véran et à Sète. La ligne en pointillés représente le seuil de saturation de la hauteur significative de la houle mesurée au dessus de la fosse interne à Véran.

Nous avons par la suite étudié la composante transversale du courant dans ces mêmes fosses internes. La figure III.62, met en évidence pour le site de Véran, une accentuation des vitesses de la composante transversale du courant à partir du moment où le déferlement de la houle se produit sur la barre interne. La figure nous montre également une intensité généralement plus importante de la composante transversale du courant sur le site de Sète. En revanche il est intéressant de noter que si à Sète cette composante peut s'orienter (à hauteur de houle similaire), soit vers le large soir vers la côte, à Véran les résultats montrent une orientation exclusivement vers le large, avec cependant des vitesses qui restent inférieures au seuil d'entraînement des sables (0.4m/s). Cette dynamique, est néanmoins, peu propice à une « remontée », et une alimentation en sable susceptible de reconstruire une plage en pied de digue. Ce constat confirme les observations effectuées dans le chapitre II sur l'analyse bathymétrique, et les résultats de Dean (1986), Sayre (1987), Kraus (1988) et Fletcher (1997).

Etant donné que le S4, dans la fosse externe à Sète, proposait des enregistrements correspondant, dans la colonne d'eau, à la zone de blanking des ADCP sur le site de Véran nous n'avons, en revanche, pas pu comparer de façon pertinente les vitesses de courant dans la fosse externe à Sète et sur notre site.

Figure III 62: relation entre, hauteur significative de la houle (Hs)mesurée au dessus de la fosse externe, et la vitesse de la composante transversale du courant (Cmu) moyennée pour chaque burst dans la fosse interne à Véran et à Sète. La ligne en pointillés représente le seuil de saturation de la hauteur significative de la houle mesurée au dessus de la fosse interne à Véran. Les valeurs négatives désignent une composante dirigée vers le large et les valeurs positives une composante dirigée vers la côte.

6.2 Les dynamiques transversales

La description des phénomènes dynamiques sur un plan longitudinal et leur synthése par l'analyse statistique multi variée a permis de définir, en GI16, au droit de la digue, un développement plus important des composantes transversales de courant dirigée vers le large en période d'agitation. Nous avions supposé une sur-représentation des phénomènes réflectifs sur le site. La vérification de cette hypothèse se basera sur la comparaison des deux appareils (S4, en fosse interne et ADV en fosse externe) placés le long d'un profil transversal.

Compte tenu du fait que nous ne disposions pas de mesures courantologiques sur le profil GI16 avant la construction de la digue, la méthode a reposé, ici, sur la comparaison de notre expérience (Site de Véran) avec celle menée par Certain et al., (2005).

Figure III 63: détermination des coefficients de réflexion à Sète et à Véran

Nous avons ensuite évalué les coefficients de réflexion calculés au dessus des appareils au niveau des fosses interne et externe de chacun des deux sites en considérant une plage au fonctionnement naturel (Sète) et une plage endiguée (Véran) (Figure III.63), en s'appuyant sur la méthode décrite dans le chapitre II de cette partie. Ces coefficients de réflexion seront exprimés en pourcentage de l'énergie totale.

La comparaison de nos résultats et ceux de Certains et al., (2005) permet d'identifier des coefficients de réflexion supérieurs sur le site de Véran sur la fosse interne comme sur la fosse externe, démontrant un caractère moins dissipatif du secteur (tableau III.19).

Hs (m)	Cr énergie S4	Cr énergie ADV	Cr énergie S4	Cr énergie S4	Fosse interne	Fosse externe
	Fosse interne	Fosse externe	Fosse interne	Fosse externe	rapport Cr	rapport Cr
	Véran(%)	Véran (%)	Sète (%)	Sète (%)	(Véran)/Cr (Sète)	(Véran)/Cr (Sète)
TOTAL	27.5	21.7	15.2	7.5	1.8	2.9

Tableau III 19: Coefficient de réflexion moyen dans la fosse interne et externe à Sète et à Véran.

Ces coefficients sont en moyenne, (toutes Hs confondues, Tableau III.19), dans la fosse interne 1.8 fois plus important à Véran, avec 27.5% contre 15.2% à Sète. Dans la fosse externe il est près de 3 fois supérieur à Véran, avec 21.7% à Véran et seulement 7.5% à Sète. Notons également que les coefficients de réflexion sont plus élevés dans les fosses internes.

Dans le détail à Sète (figure III.64, et tableau III.20), les houles de faible amplitude (<0.4m) s'accompagnent d'une énergie réfléchie plus importante dans la fosse interne comme dans la fosse externe. Dans la fosse interne la réflexion atteint près de 20% à 40% et de 10 à 40% dans la fosse externe pour des houles inférieures à 0.25m. La part d'énergie diminue ensuite progressivement avec l'augmentation de la hauteur significative de la houle pour se stabiliser à des valeurs plus faibles autour de 15% dans la fosse interne (pour des houles de 0.75 à 1m) et 7.4% dans la fosse externe (pour des houles de 1.75 à 2m).

Figure III 64: coefficient de réflexion en énergie et Hauteur significative de la houle dans la fosse intern et externe à Sète et sur le site de Véran

A Véran, dans la fosse interne, ces coefficients restent relativement constants quelles que soient les hauteurs de houle significatives. Ils oscillent en effet entre 27.9% pour des houles inférieures à 0.25m et 27.4% pour des houles comprises entre 0.75 et 1m. Au niveau de la fosse externe la part d'énergie réfléchie est de 31.7% pour les houles inférieures à 0.25m. Les coefficients de réflexion diminuent progressivement pour atteindre 14% pour des houles de 0.75 à 1m, puis ré augmentent avec l'accroissement de l'amplitude de la houle pour atteindre 25% en moyenne pour des houles de 1.25 à 1.50m.

Hs (m)	Cr énergie S4 Fosse interne Véran(%)	Cr énergie ADV Fosse externe Véran (%)	Cr énergie S4 Fosse interne Sète (%)	Cr énergie S4 Fosse externe Sète (%)	Fosse interne rapport Cr (Véran)/Cr (Sète)	Fosse externe rapport Cr (Véran)/Cr (Sète)
0-0.25	27.9	31.7	18.9	15.09	1.48	2.10
0.25-0.5	27.6	22.8	12.6	7.8	2.19	2.92
0.5-0.75	27.2	17.09	14.3	5.4	1.90	3.16
0.75-1.00	27.4	14	15.09	6	1.82	2.33
1.00-1.25		20.09		5.3		3.79
1.25-1.50		25.09		5.4		4.65
1.50-1.75				7.7		
1.75-2.00				7.4		

Tableau III 20: moyenne des coefficients de réflexion en fonction des Hauteurs significatives de la houle à Sète et sur le site de Véran

Finalement, nous venons de démontrer que sur le site de Véran, l'énergie de l'onde réfléchie, égale en moyenne à 24% de l'onde incidente (fosse interne et externe confondues), est 2 fois supérieure au site de Sète où elle atteint seulement 11%. Notons également la présence de coefficients de réflexion en énergie, stabilisés à un pourcentage élevé (27%) au niveau de la fosse interne en pied de digue démontrant le caractère très réflectif de la zone. Si on tient compte des résultats de Sawaragi (1967) qui donne, à ce propos, une valeur seuil de réflexion de 0.25 (soit 25%) au dessus de laquelle l'affouillement se produit, nous pouvons effectivement définir pour le secteur de la fosse interne en pied de digue un « climat dynamique » propice à l'affouillement.

Ce travail s'est appuyé essentiellement sur la caractérisation du rapport entre amplitude (et donc énergie) de l'onde incidente et onde réfléchie. Rappelons également, que nous avons vu, dans l'analyse statistique précédente, que sur le profil GI16, l'augmentation de la hauteur et donc de l'énergie de la houle conditionnait une intensification des composantes transversales de vitesses. Ce constat semble concorder avec les résultats de ce dernier paragraphe portant sur l'analyse et la comparaison des coefficients de réflexion à Véran et à Sète. En effet il est probable que la forte représentation des composantes transversales du courant dans la fosse interne sur le site de Véran soit en relation avec ces coefficients de réflexion. La combinaison de ces processus est de ce fait susceptible d'entraver le processus de reconstruction de la plage en pied d'ouvrage.

Ici comme pour l'explication des vitesses longitudinales de courant, nous insisterons sur les effets de site. A savoir que la présence de la digue, nous l'avons vu, a modifié la bathymétrie qui elle-même contribue à perturber le fonctionnement dynamique « originel ». Il semble que sur notre site, la présence de coefficients de réflexion supérieur est étroitement liée aux perturbations dynamiques et/ou morphologiques induites par l'ouvrage.

7. Discussion /Conclusion du Chapitre III

L'analyse des dynamiques longitudinales et transversales de courant au droit et en aval dérive dominante de la digue frontale de Véran, et la comparaison des ces données avec celles obtenues par Certain et al sur le site de Sète (2005) ont permis d'apporter des éléments nouveaux de réponse à l'impact d'une digue frontale sur la morphodynamique d'un secteur équipé d'une digue frontale.

Nous montrons en effet que la présence de la digue modifie la morphologie du site par une accentuation des pertes sédimentaires (mises en évidence également dans le chapitre II) et une augmentation de la surface mouillée au droit de la digue, générant une diminution des vitesses de courant longitudinal. En contre partie le secteur dit « naturel » (GI17) ne subit pas de modifications morphologiques, la surface mouillée s'est avérée identique, avant et après la construction de la digue. Cette surface, désormais plus faible que celle retrouvée au droit de la digue (GI16), génère une vitesse de courant potentiellement plus importante quelle que soit sa direction. Cette démonstration a permis d'expliquer les différentiels de vitesse présents dans la fosse externe sur le profil au droit et en aval dérive de la digue. Nous avons montré ensuite que les vitesses de courant dans la fosse interne à Sète (à hauteur de houle identique) sont généralement plus fortes qu'en pied digue sur notre site. En revanche ce dernier montre une composante transversale, du courant longitudinal, exclusivement dirigée vers le large.

Nous avons ensuite, sur un plan transversal, démontré l'existence de coefficients de réflexion plus importants dans les fosses internes et externes sur le profil au droit de la digue, que sur le profil naturel de Sète (Certain et al., 2005). Nous avons mis en évidence que les coefficients de réflexion semblent avoir un rôle essentiel dans l'explication de la mobilisation du sable et donc des bilans sédimentaires. Différentes études rejoignent ce constat (Dorland ; 1940, Dean, 1988 ; Kraus, 1988 ; Miles et al., 2001), et montrent que dynamiquement la

superposition d'ondes incidentes et réfléchies peut accentuer la mise en suspension des sédiments le long d'un profil, qui sont ensuite pris en charge, par les courants (Dolan 1940, Russel et al., 1953 ; Silvester (1977, 1987); Lin et al., (1987) ; Kraus, 1988 ; Tait and Griggs, 1990 ; Miles et al., 2001). Nous avons par la suite montré le lien probable entre : forte représentation de la composante transversale du courant, et importance des phénomènes réflectifs dans la fosse interne, susceptible d'entraver le processus de reconstruction de la plage. Ce constat rejoint les résultats de Sayre (1987) qui démontrent que dans le cas de secteurs en déficit sédimentaires et/ou de concentration de l'énergie de la houle, la reconstruction est fortement ralentie.

Globalement nos résultats montrent l'effet direct et/ou indirect de la digue sur la morphodynamique du site de Véran.

Il est vrai que les mesures traitées dans ce travail portent sur un laps de temps relativement court, mais notons cependant qu'elles ont été acquises en périodes d'agitation potentiellement plus morphogènes, donc significatives. Notons également que nous avions mis en évidence le caractère assez atypique de ces conditions rencontrées pendant cette période par rapport à des conditions hivernales moyennes. Notons également que les travaux précédents de Sabatier (2001) sur le delta du Rhône, Durand (1999) et Certain (2002) en Languedoc ont montré des tendances générales différentes de nos mesures courantologiques. En effet ces auteurs démontrent des transits sédimentaires annuels plus importants en Camargue qu'à Sète.

Quoi qu'il en soit, ces résultats mettent également en évidence le fait qu'il est essentiel de tenir compte des phénomènes de réflexion dans l'estimation de la capacité de mise en suspension des sédiments et donc dans l'intensité du transport sédimentaire. Or ce paramètre n'est actuellement pas pris en compte dans les formules empiriques de calcul du transport sédimentaire.

CONCLUSION GENERALE DE LA PARTIE III.

Nous avons mis en évidence dans un premier temps, en nous appuyant sur une synthèse bibliographique (Chapitre I) que les résultats de certains travaux portant sur l'étude de l'impact d'une digue frontale sur les fonds sableux adjacents, étaient parfois en totale contradiction. Tous s'accordent à dire, en revanche, qu'il est nécessaire d'effectuer des mesures de comparaison bathymétriques et courantométriques, devant et en aval dérive des ouvrages sur des secteurs différents.

Ce travail s'était donc fixé comme objectif de compléter l'ensemble des études précédentes portant sur cette thématique. Il se proposait, de ce fait, d'étudier l'impact morphodynamique d'une digue frontale (digue de Véran) de 3km de long édifiée en position du rivage, dont l'édification est directement liée aux importants problèmes d'érosion côtière sur le littoral sableux de Camargue (Delta du Rhône).

Le deuxième chapitre, portant un suivi de profils bathymétriques effectués au droit et de part et d'autre de l'ouvrage, a permis de comparer l'évolution des fonds avant et après l'édification de la digue sous sa forme actuelle. Les résultats et interprétations se sont montrés en contradiction avec certains travaux qui admettent que la morphologie des fonds au droit et autour des digues n'est pas fondamentalement différente. Au contraire nous montrons l'impact négatif des digues sur la bathymétrie environnante remettant en question à terme la stabilité de l'ouvrage. Cependant les réponses morphologiques et hydrodynamiques à l'implantation d'une digue dépendent largement des conditions locales : position de la digue sur le profil, tendance érosive à long terme, et type de structures. Nous soulignons de ce fait les difficultés de compréhension des phénomènes d'érosion devant un seawall dès lors qu'on s'intéresse à des cas d'étude et la difficulté à généraliser l'impact d'un tel ouvrage sur la bathymétrie. Nous avons mis en évidence que l'analyse de l'impact d'un seawall doit se faire transversalement mais aussi longitudinalement. Une campagne de mesures in-situ courantologique respectant ces propositions a été menée.

Dans le troisième chapitre, l'analyse des dynamiques longitudinales et transversales de courant, sur deux profils transversaux, au droit et en aval dérive dominante de la digue frontale de Véran, et la comparaison des ces données avec celles obtenues par Certain et al sur le site de Sète (2005) ont permis d'apporter des éléments nouveaux de réponse à l'impact d'une digue frontale sur la morphodynamique d'un secteur équipé d'une digue frontale.

Nous montrons en effet que la présence de la digue modifie la morphologie du site par une accentuation des pertes sédimentaires (mises en évidences également dans le chapitre II) et une augmentation de la surface mouillée au droit de la digue, générant une diminution des vitesses de courant longitudinal. Cette démonstration a permis d'expliquer les différentiels de vitesse présents dans la fosse externe sur le profil au droit et en aval dérive de la digue. Nous avons montré ensuite que les vitesses de courant dans la fosse interne sur le site naturel de Sète sont généralement plus fortes qu'en pied digue sur notre site. En revanche ce dernier montre une composante transversale, du courant longitudinal, exclusivement dirigée vers le large, susceptible d'entraver la remontée de sable vers le pied de digue et reconstituer une plage.

Nous avons ensuite, sur un plan transversal, démontré l'existence de coefficients de réflexion plus importants, dans les fosses internes et externes, sur le profil au droit de la digue, que sur le profil naturel de Sète (Certain et al., 2005). Nous avons ainsi pu mettre en évidence que la superposition d'ondes incidentes et réfléchies était probablement à l'origine de l'accentuation de la mise en suspension des sédiments le long du profil au droit de la digue, et des pertes sédimentaires par re-mobilisation par les courants locaux. Nous avons de ce fait émis la nécessité d'intégrer, dans le calcul des formules empiriques de transport sédimentaire, les coefficients de réflexion.

Ces résultats ont permis, en tout état de cause, de mettre en évidence l'effet incontestable direct et/ou indirect de la digue sur la morphodynamique du site de Véran.

PARTIE IV :

MODIFICATIONS DES FONDS AU DROIT D'UN RIVAGE STABILISE : LE CAS DU LITTORAL DES SAINTES MARIES DE LA MER.

Nous avons vu dans les chapitres précédents les impacts induits par l'implantation d'ouvrages transversaux et longitudinaux en enrochement sur l'évolution de littoraux adjacents. Les phénomènes perturbateurs et hautement morphogènes mis en évidence, notamment par les mesures dynamiques au droit de la digue frontale de Véran, ont démontré les dangers de la stabilisation par des enrochements massifs d'un rivage.

Sur la base de ces conclusions, nous allons étudier, dans cette partie, le cas de la ville des Saintes Maries de la Mer. Nous avons vu rapidement, dans la 1^{ère} partie, que cette section du littoral du Golfe du Lion a été particulièrement équipée d'ouvrages en enrochement. Des épis, des brises lames, et des digues frontales y ont été édifiées afin de protéger la ville contre le recul rapide du rivage. Si ces méthodes ont permis de stabiliser le rivage et « sauver » la ville (Sabatier et Provansal, 2000), l'évolution sous marine reste aujourd'hui inconnue.

Cette étude se donne donc pour objectif d'étudier l'évolution sous marine d'un littoral où le recul pluriséculaire naturel a été stoppé par une artificialisation massive, afin de déterminer si cette fixation génère une augmentation des pentes immergées et donc de l'agressivité marine.

CHAPITRE I: CONTEXTE FONCTIONNEL DU LITTORAL DES SAINTES MARIES DE LA MER

Le secteur d'étude représente un linéaire côtier d'un peu plus de 16 km entre le Grand Radeau à l'Ouest et le phare de la Gachole à l'Est et s'étend en mer jusqu'à environ 20 mètres de profondeur. Pour comprendre le fonctionnement actuel du secteur il est important de retracer l'histoire de la mise en place de ce littoral.

1. Evolution holocène et récente du secteur

Le littoral du golfe des Saintes Maries de la mer recoupe principalement le lobe rhodanien fossile de Saint-Ferréol (Cf. partie 1). En effet, la faible profondeur du golfe des Saintes-Maries et son littoral rectiligne résultent de la présence des prismes et cordons progradants du système aval de Saint-Ferréol, mis en place après 2400 BP (Figure IV.1, Vella et al., 2005). Après l'avulsion du bras de St Ferréol, la partie distale du lobe a subi une érosion rapide, dont les produits ont été transportés vers l'ouest, pour former la flèche de Pin Fourcat, aujourd'hui totalement insérée dans la plaine deltaïque de petite Camargue (L'Homer et al., 1981; Vella et al., 2005). La partie occidentale du delta connaît alors une progradation rapide à partir du lobe de Peccaïs, puis des systèmes déviés de l'embouchure occidentale. A partir de 1552 (l'Homer et al., 1981) le bras le plus occidental du Rhône avulse à nouveau vers les Saintes Maries de la mer et la partie aval du distributaire actuel du Petit Rhône se met alors en place. L'embouchure et les cordons adjacents progradent dans le golfe des Saintes Maries. Un nouveau stock sédimentaire se reconstitue mais cette fois légèrement à l'ouest des Saintes Maries au droit de l'embouchure du Grau d'Orgon. Le littoral, jusqu'alors en recul, montre un nette tendance à la progradation sur de nombreuses cartes anciennes (L'Homer, réf carte géol). Depuis 150 ans le Rhône a été soumis à des changements importants qui ont modifié l'afflux sédimentaire et ses conditions d'écoulement (Pichard, 1995, Pont et al., 2002, Provansal et al 2003): réduction de la fréquence des fortes crues avec la fin du Petit Age Glaciaire, diminution de la charge solide liée aux changements de l'occupation du sol et aux ouvrages hydro-electriques, ont entraîné entre autre une modification des bilans sédimentaires dans le bas-Rhône.

Suite à la diminution probable des apports fluviaux par le Petit Rhône, à partir du milieu du XIX^{ème} siècle, la partie marine submergée du lobe du petit Rhône connaît une érosion croissante alors que le Grand Rhône concentre les apports sédimentaires (Sabatier et al., 2006). C'est donc dans un contexte hydro-sédimentaire déficitaire installé depuis plus de cent ans que les aménagements du XX^{ème} siècle interviennent. Ce rapide historique permet de comprendre que l'origine du recul côtier dans le secteur des Saintes Maries s'inscrit dans un contexte long caractérisé par de faibles apports sédimentaires fluviaux.

Figure IV 1: localisation du secteur d'étude. Source C.Vella, 1999, 2005 et l'Homer et al 1981

2. Evolution actuelle du secteur

Nous venons de voir que l'érosion du secteur s'inscrivait dans un contexte long. (Duboul Razavet, 1956), Clairefond (1977) et Blanc (1977) ont reliés ce recul à la réorganisation des transits sédimentaires dans le secteur. En effet, ces auteurs, sans formuler le concept de la dérive littorale, indiquent que les sables érodés au niveau de l'embouchure du Petit Rhône sont déplacés par les houles vers le golfe de Beauduc. Sabatier et Arnaud-Fassetta (1999) mettent ensuite en évidence l'évolution synchrone entre la diminution des apports sédimentaires par le fleuve et l'érosion plus rapide des plages à la fin du XX^{ème} siècle. Le rôle "stabilisateur" des ouvrages sur la position du rivage est proposé par Sabatier et Provansal (2002). Ces auteurs montrent que sans les enrochements, le trait de cote de 2000 atteindrait approximativement la partie centrale du village. Sabatier et Suanez (2003) conduisent une analyse des variations du rivage le long du littoral du delta du Rhône et précisent que ce secteur affichait des vitesses de reculs élevés, entre -5 et -10 m/an, avant l'artificialisation du trait de cote de la fin des années 80. Ces auteurs ne décrivent cependant pas l'érosion des fonds qui demeure inconnue. L'évolution bathymétrique est décrite par Sabatier et al. (2006) mais cette analyse ne concerne qu'une approche séculaire sans pouvoir préciser si la fixation du rivage a augmenté ou non l'érosion sous marine.

3. Les ouvrages de protection

Située lors de sa construction en 1856-1857 à une distance importante du rivage (plus d'un 1km), la Digue à la Mer, première construction de grande ampleur, avait comme rôle d'empêcher que la mer n'envahisse les étangs méridionaux (ou de basse Camargue) entre Salins de Giraud et les Saintes Maries de la Mer, par forte tempête.

Dans les années 40, face au recul continu du rivage, des ouvrages de défense en enrochement de type épis, destinés à freiner l'érosion côtière ont été édifiés au centre et à l'Est des Saintes Maries de la Mer. La deuxième moitié du XX^{ème} siècle voit se multiplier les ouvrages de protection ou de stabilisation ainsi que les constructions liées aux activités touristiques (Port Gardian en 1984). Les ouvrages occupent depuis une trentaine d'année une place importante dans le paysage des Saintes Maries de la Mer. Le « durcissement » quasitotal du littoral a contribué ici à fixer artificiellement le littoral de la ville (figure IV.2).

La première campagne d'enrochement s'est étalée de 1935 à 1963 (11 épis de 60 à 80m de long). Dans les années 1960, deux ouvrages ont été édifiés, le premier (1962) à l'Ouest de

PARTIE IV : MODIFICATION DES FONDS AU DROIT D'UN RIVAGE STABILISE : LE CAS DU LITTORAL DES SAINTES MARIES DE LA MER.

la ville était destiné à stabiliser la rive gauche de l'exutoire du Petit Rhône, l'autre au niveau de la digue Ouest actuelle du Port (1967). Les années 1970 sont marquées par une intensification de l'implantation des enrochements, à l'Ouest tout d'abord, avec le renforcement de la rive gauche du Petit Rhône, et l'édification d'une digue longitudinale à l'extrémité Ouest de la plage de Crin Blanc. Au droit de la ville, deux épis sont implantés à l'Est des arènes (1974), un épi édifié dans les années 40 est renforcé et rallongé de 300m (grand épi du Large). Les années 1980 sont marquées par la construction de Port Gardian entre deux digues portuaires (1984). Les volumes de sable extraits lors de l'édification du port ont permis d'alimenter les plages au droit de la ville, où un épi parmi les onze construits dans les années 40, est renforcé et rallongé sous la forme d'un épi en T (1984). Plus à l'Ouest une digue de haut de plage est édifiée et végétalisée (1984) et, à l'Ouest du Petit Rhône, au Grand Radeau, de nombreux épis, espacés de 200m environ, sont implantés. A l'Est, enfin, Le littoral est renforcé par une digue frontale (1985) et l'exutoire du Grau de la Fourcade est stabilisé par un grand épi (1980), puis doublé cinq ans plus tard (1985). Les années 1990 voient la construction d'un grand épi en T (Grand épi Ouest, 1990). Enfin plus récemment, deux brises lames ont été implantés à l'extrémité Ouest de la plage de Crin Blanc en 2003.

Figure IV 2: localisation et période de création des ouvrages de défense (fond :ortho photographie IGN, 2003)

4. Conclusion partielle

Le littoral des Saintes Maries de la Mer est soumis, nous l'avons vu à une érosion pluriséculaire naturelle. Les vitesses de recul du rivage générées sont très rapides, comprises entre 2.3 et 8.4m/an suivant les secteurs. Le littoral de la zone urbanisée se caractérise par la faiblesse des vitesses de recul par rapport au reste du secteur; ici les ouvrages en enrochement ont bloqué très tôt le recul du rivage (dès 1940 au droit des Arènes). Sur les sections de part et d'autre de la ville le recul s'est accentué depuis le milieu du XX^{ème} siècle. Les diverses campagnes d'enrochement viendront jusqu'en 2003 finir d'artificialiser la quasi-totalité du littoral sur le secteur. Si l'érosion en surface a été contenue, des interrogations subsistent sur l'évolution des fonds au droit de la ville. Nous nous pencherons donc sur le comportement des fonds sableux au droit et de part et d'autres d'un rivage entièrement fixé. Nous étudierons l'impact que peuvent avoir les nombreux ouvrages de protection en enrochement sur l'évolution des fonds sableux à une échelle spatiale de quelques kilomètres.

CHAPITRE 2: METHODE D EVALUATION DE LA MOBILITE BATHYMETRIQUE.

L'étude de l'influence, sur les fonds à l'échelle de plusieurs kilomètres, des ouvrages en enrochement, s'appuiera tout d'abord sur le calcul des bilans sédimentaires à partir de la comparaison de Modèles Numériques de Terrain (MNT) avant et après les grandes campagnes d'enrochement. Nous analyserons ensuite l'évolution des valeurs de pente sur le secteur

1. Détermination des bilans sédimentaires par la comparaison de Modèles Numériques de Terrain.

Cette analyse sera basée sur la comparaison de cinq Modèles Numériques de Terrain issus de données de sondes de 1872 à 2005. Un modèle numérique de terrain est une représentation numérique discrète du relief terrestre sur une région donnée. Il s'agit d'un modèle dans le sens où il donne, en un nombre de points limités (x,y) une valeur approchée du relief et non pas sa valeur véritable.

Il s'agit ici d'analyser et évaluer le comportement des fonds en présence d'un rivage stabilisé. Pour cela nous avons replacé la section de la ville des Saintes Maries de la Mer sur au sein d'un espace géographique plus large. Nous avons considéré une section littorale élargie correspondant t à la zone des dépôts fluviaux hérités (Rhône de Saint Ferréol) et actuels (Petit Rhône) sur le secteur. La zone de génération des MNT sera donc comprise entre le Grand Radeau à l'Ouest et, dans un soucis de cohérence dynamique, jusqu'au point d'inflexion de la cellule sédimentaire 6 (cf.partie I) à l'Est : le phare de la Gachole.

La manipulation de données à référence géographique implique l'évaluation de la qualité de ces dernières. Plusieurs sources d'erreurs, pouvant altérer la qualité de la base de données sont recensées (Burrough et McDonnel, 1998) parmi lesquelles:

• L'erreur de mesure initiale : cette erreur est relative au mode d'acquisition de la donnée. Précision du positionnement (x et y) et de la valeur des points de sondes (z).

• La justesse de la localisation : elle peut être affectée par le support utilisé (données scannées à partir d'une carte déformée)

• L'uniformité d'acquisition : il est théoriquement préférable d'obtenir une couverture homogène d'un semis bathymétrique. L'acquisition sur plusieurs années d'une couverture peut conduire à des changements de protocoles d'acquisition de l'information.

• La densité des observations : le plan d'échantillonnage doit être pertinent pour prendre en compte la variabilité du milieu étudié. Pour cette étude il est essentiel de disposer au moins des lignes isobathes, illustrant les changements éventuels des valeurs de pente.

Ces considérations ont été utilisées pour choisir de façon la plus pertinente qui soit les données qui seront utilisées en entrée dans ce travail.

1.1 Collecte des données bathymétriques

Nous disposions de cinq dates pour l'évaluation de la mobilité et de l'érosion des fonds au droit des Saintes Maries de la Mer : 1872, 1895, 1974, 1980 et 2005.

Les semis de points correspondants à ces cinq dates ont été obtenus par numérisation de cartes bathymétriques et par mesures bathymétriques (points de sonde aléatoires ou par profils transversaux, et courbes isobathes). Les minutes de l'EPSHOM (1872, 1895 et 1974) ont été scannées, numérisées et recalées par Sabatier (2001). (Tableau IV.1)

Date	Source	acquisition de la donnée	profondeur max (m)
1872	EPSHOM	Lignes isobathes (EPSHOM) et numérisation des minutes (Sabatier 2001)	-60
1895	EPSHOM	Lignes isobathes (EPSHOM) et numérisation des minutes (Sabatier 2001)	-65
1974	EPSHOM	semis de points dense (EPSHOM) et numérisation des minutes (Sabatier 2001)	-66
1980	Services maritimes des Bouches du Rhône	carte de relevés bathymétriques par profils transversaux et numérisation des points de sonde effectuée dans le cadre de ce travail	-12.8
2005	cette étude	campagne de relevés bathymétrique par profils transversaux et post traitement sur station de travail	-12.9

Tableau IV 1: récapitulatif des données bathymétriques utilisées

Les données de 1980 relevées par GEOMIDI pour le compte de la commune des Saintes Marie de la Mer et des Services Maritimes des Bouches du Rhône (carte bathymétrique recalées et numérisées) et, 2005 (issues d'une campagne de mesures bathymétriques effectuées au mois de juillet dans le cadre de cette thèse,) ont été traitées.

Les relevés bathymétriques que nous avons pu analyser ne permettent pas d'étendre, pour l'ensemble du secteur, l'étude jusqu'à la profondeur de fermeture sur une échelle de temps

séculaire. L'étude de la mobilité des fonds sera donc effectuée sur une tranche bathymétrique s'étendant de 0 à -13m correspondant globalement à la zone la plus active des profils de plage sur le secteur, celle où les fonds et donc le transport sédimentaire sont très influencés par les vagues déferlantes.

1.2 Précision des données bathymétriques

La précision des relevés bathymétriques est un paramètre rarement pris en compte dans l'étude des variations des fonds. Mais de faibles variations, sur des grandes surfaces peuvent finalement traduire des déplacements sédimentaires importants, même si leur appréciation réelle reste difficile (Gorman et al., 1998).

L'erreur verticale peut être évaluée selon la somme des erreurs dues aux variations du plan d'eau, aux houles et aux performances du sondeur. Dans le cas de comparaisons à des échelles géographiques et temporelles importantes, la montée du niveau de la mer, déduite des données de sondes à partir des enregistrements du Grau de la Dent disponibles depuis 1905, a été prise en compte (Sabatier 2001). Un référentiel commun (NGF) à toutes les cartes a été utilisé, après des corrections pour les relevés du XIX^{ème} siècle.

Au XIX^{ème}, les mesures ont été effectuées au fil à plomb. La profondeur de chaque point de sonde a été évaluée pas un lissage de plusieurs points de mesures successifs, de manière à annuler l'erreur liée à la houle. Les hydrographes de l'EPSHOM admettent une erreur d'amplitude de 0.3m avec cette technique pour les profondeurs les plus importantes. Aucune correction marégraphique n'étant effectuée, les enregistrements marégraphiques et houlographiques de l'année 1999-2000 ont été utilisés pour déterminer les côtes minimales et maximales du plan d'eau sous une houle inférieure à 0.3m, correspondant à la description d'une mer belle (Sabatier 2001). Les enregistrements montrent des valeurs maximales de +0.46m NGF et minimales de -0.2m NGF. Au total, l'erreur estimée des bathymétries de 1872 et 1895 est de +0.76 à -0.5m. Les bathymétries plus récentes ont été réalisées au sondeur à ultrasons et la marge d'erreur est généralement considérée proportionnellement à la profondeur (environ 2%). Nous avons admis une erreur générale de +/- 0.2m.

Les erreurs horizontales sont évaluées par l'EPSHOM à +/-10m sur l'ensemble des relevés après correction. Cette erreur ne sera pas prise en compte dans la construction des MNT du fait de l'organisation bathymétrique douce et peu accidentée des fonds. Les données

de 2005, sont issues d'une campagne de mesures bathymétriques effectuées au mois de juillet 2005. Le matériel utilisé (2Trimble Pro XR, base et mobile, et sondeur Triteck) a permis d'obtenir une précision optimale des relevés (en X, Y et Z), en autorisant une acquisition instantanée des valeurs de sonde (Z) et de position (X, Y) toutes les secondes, couplée à une correction, par post traitement sur station de travail, du niveau instantané du plan d'eau. Les marges d'erreur ont été évaluées à 4 à 5 cm en X et Y, et 10 cm en Z.

Afin de quantifier de façon pertinente et le plus justement possible l'évolution du secteur considéré, ces données ont fait l'objet d'un traitement statistique pour une représentation sous forme de Modèles Numériques de Terrain (MNT) à l'aide du logiciel *Surfer* version 7.

1.3 Choix du maillage

La définition du maillage approprié à l'interpolation, est une étape essentielle qui intervient bien avant le choix même de la méthode statistique à appliquer. Le choix du pas de maille est conditionné par la densité des données numérisées. En toute rigueur, le pas de maille, p, ne peut pas être inférieur à 1/Fn (théorème de Nyquist). Fn est la fréquence de Nyquist définie comme la moitié de la fréquence d'échantillonnage Fe.

$$Fn = \frac{1}{2}Fe$$
 mesurée en un point par mètre

L'interpolation d'un ensemble de données, avec un pas de maille supérieur à 1/Fn, crée des structures de courte longueur d'onde, non significatives, pouvant conduire à des interprétations erronées des données interpolées. Au contraire, une interpolation menée avec un pas de maille nettement supérieur à 1/Fn provoquera une perte d'information mais n'affectera pas la fiabilité des données interpolées. L'idéal est bien sûr de choisir p=1/Fn. Si De est la densité d'échantillonnage par unité de surface, on a :

$$P = \frac{1}{Fn} = \frac{2}{Fe} = \frac{2}{\sqrt{De}}$$

Le tableau (IV.2) donne les fréquences d'échantillonnage et les maillages calculés suivant ce principe pour chaque document. Il est important de signaler que pour produire un différentiel de volume le même maillage doit être utilisé entre les deux MNT à comparer. Dans un souci de précision et étant donné qu'un maillage lâche dégrade la précision de l'interpolation, nous avons à chaque fois ajusté le semis de point le plus dense des deux MNT à étudier, au relevé le moins dense. Nous avons préféré cette méthode à celle consistant à choisir un maillage constant pour l'ensemble des semis de points.

	Densité d'échantillonnage pour 1km²	Maillage retenu (m)
1872	50	282.84
1895	400	100
1974	300	115.48
1980	210	138.09
2005	1200	57.73

Tableau IV 2: densité d'échantillonnage et maillage retenu pour l'interpolation

Les méthodes d'interpolations sont nombreuses et nous avons fait le choix de tester les six méthodes censées s'appliquer à nos données en entrée (nombre d'observation supérieur à 1000).

1.4 Traitement statistique et interpolation des données

L'interpolation est l'opération qui consiste à redistribuer l'information aux nœuds d'une grille régulière. D'une façon générale la valeur d'altitude Z d'une nœud d'une grille est calculée à partir des valeurs de Z prises par un certain nombre de points numérisés, géographiquement proches du nœud en question. La manière dont l'altitude de ces points est prise en compte diffère selon la méthode d'interpolation utilisée, du phénomène qu'on cherche à modéliser et de la distribution du semis de point.

La méthode d'interpolation avec *Surfer* peut être divisée en deux catégories générales « exact interpolators » et « smoothing interpolators ». Nous testerons essentiellement ici les méthodes dites « exact interpolator » (Inverse Distance Weight, Krigeage, Radial Basis Functions, Shepard's Method, Triangulation avec une interpolation linéaire) et une méthode souvent utilisée en science de la terre dite « smoothing interpolators » (Minimum Curvature). Nous prendrons en compte également quatre des six méthodes conseillées, par le logiciel, pour un nombre de données en entrée supérieure à 1000 observations: (Minimum Curvature, Radial Basis Functions, Triangulation et Krigeage)

IDW : *Inverse Distance Weight (IDW)* cette interpolation suppose que chaque échantillonnage de point a une influence locale qui diminue avec la distance. Le principal avantage de l'interpolation par l'inverse distance est la rapidité de calcul. Cependant le fait d'attribuer un poids fort aux points voisins les plus proches peut conduire à des erreurs grossières lorsque la bathymétrie est constrastée.

Kriging : *Krigeage :*Cette méthode d'interpolation suppose que la distance ou la direction entre les points échantillonnés reflète une corrélation spatiale qui peut être utilisée pour expliquer les variations de surface. Le kriging applique une fonction mathématique à un nombre spécifique de points, pour déterminer les valeurs en sortie pour chaque localisation. Il s'agit ici d'une méthode géostatistique appliquée au départ par les géologues à l'évaluation de dépôts minéralisés. On utilise pour ce faire la notion de semi-variogramme qui décrit la corrélation de la variable considérée (altitude dans notre cas) en fonction de la distance (et éventuellement de la direction). Pour cela il est nécessaire d'évaluer l'expression analytique d'une fonction g ajustant au mieux l'ensemble des valeurs du semi-varigramme calculée à partir des points numérisés.

Radial Basis Functions : Les fonctions qui peuvent être spécifiées pour ce type d'interpolation, sont analogues aux variogrammes du Krigeage. Par contre ce type d'interpolation par ses fonctions propose différents type de calculs, la mutiquadratic method est souvent considérée comme étant la meilleur méthode.

Shepard's Method : Cette méthode apparue en 1968, a subit quelques modifications. Elle s'apparente à l'IDW, mais l'utilisation des moindres carrés qu'elle propose élimine ou en tout cas réduit les effets de puit (sous représentation de la bathymétrie en l'absence de points de sonde proches.

Triangulation avec interpolation linéaire : cette méthode utilise la triangulation de Delaunay. L'algorithme crée des triangles en générant des lignes rejoignant les points. Les point originaux sont connectés de telle sorte qu'il n'y aie pas de recoupement entre les triangles. Cette méthode propose les meilleurs résultats lorsque les données d'entrée sont réparties de façon homogène dans l'espace.

Minimum Curvature : largement utilisée en sciences de la terre cette méthode d'interpolation contribue à lisser le plus précisément possible les surface tout en essayant de respecter les données d'entrée. Mais elle reste une méthode qui peut ne pas respecter totalement les données d'entrée.

Au-delà du simple choix de la méthode à retenir pour une interpolation il est important de signaler que la numérisation des semis de points peut induire une répartition anisotrope des données à interpoler. Nous pouvons prendre par exemple des courbes de niveau ou isobathes : l'information est dense à l'emplacement des courbes de niveau, nulle ailleurs. Cet inconvénient peut être atténué si l'on choisit un pas de numérisation suffisamment lâche. Cependant, certains semis de point rassemblent un grand nombre d'information selon des lignes longitudinales (isobathes) ou transversales (profils transversaux) l'information donnée n'est donc pas homogène dans l'espace comme peut le proposer un semis en « nuage de points ». C'est le cas notamment dans la situation où tous les points à prendre en compte, pour calculer l'altitude à un nœud de grille (plus proches voisins), se trouvent sur la même courbe de niveau. Cela conduit à produire un MNT où apparaissent des marches d'escalier. La solution consiste alors à choisir les plus proches voisins de façon à ce qu'ils soient également répartis, dans les différentes portions d'un cercle centré sur le point à interpoler.

Cependant le secteur étudié ne présente pas un linéaire côtier rectiligne (composante Sud Ouest / Nord Est au niveau des Saintes Maries de la Mer). Aussi, pour les semis de points de types profils transversaux, la correction qui utilise l'option de *surfer* « en cercle de correction étiré » prenant en compte préférentiellement les points situés dans un alignement Est-Ouest n'a pas pu être appliqué. Pour ces données là nous avons choisi de garder la correction proposée par défaut correspondant aux plus proches voisins répartis autour d'un points sur un espace parfaitement circulaire.

En revanche certaines fonctions, comme celles que propose le Kriging, permettent de définir des secteurs de recherche prenant en compte un nombre de point constant permettant de s'affranchir en partie de la notion de poids des données les plus proches. En fonction de la distribution des points on peut demander de favoriser la quantité de point et leur orientation plutôt que leur distance par rapport à la donnée en entrée.

1.5 Comparaison et validation des méthodes d'interpolation

Compte tenu des différences spatiales des relevés de sonde nous avons sélectionné les relevés de 1872 (lignes isobathes), 1974 (semis de points réguliers) et 2005 (profils transversaux) pour cette comparaison.

1.5.1 Validation par comparaison visuelle des cartes bathymétriques

La première validation consiste en une comparaison visuelle des grilles d'interpolation créées pour chaque méthode et chaque date, d'une part à l'échelle de la zone étudiée et d'autre part à l'échelle plus fine d'un profil.

Dans le cas de relevés par des lignes isobathes, le maillage choisi en respectant la règle de Nyquist est relativement lâche. Visuellement quatre méthodes retiennent notre attention sur la figure IV.3 (Le krigeage, IDW, Radial Basis Fonction et la triangulation) Avec un semi de sondes dense, l'ensemble des méthodes testées proposent une représentation cohérente de la bathymétrie; les variations locales (embouchure du Petit Rhône, droit des Saintes Maries de la Mer) sont également bien représentées quelles que soient les méthodes d'interpolation (figure IV.4).

Figure IV 3: représentation du semis de point type « isobathe » en fonction des méthodes d'interpolation. Echelles en coordonnées métriques Lambert II étendu

Dans le cas de profils transversaux (figure IV.5), les interpolations révèlent de fortes disparités, et les erreurs décrites plus haut, inhérentes à chaque méthode, ressortent. Deux méthodes se montrent particulièrement influencées par les données d'entrée (IDW et Minimum Curvature). Toutes deux montrent des variations morphologiques surprenantes, en particulier là où les profils transversaux sont les plus espacés. La méthode Radial Basis Fonction, présente dans une moindre mesure les mêmes erreurs en particulier près de la côte. Finalement les deux interpolations les plus « justes » pour ce type de semi de point, sont le Kriging et la Triangulation.

Figure IV 4: représentation du semis de point type « semis de points denses » en fonction des méthodes d'interpolation. Echelles en coordonnées métriques Lambert II étendu.

Figure IV 5: représentation du semis de point type profils transversaux en fonction des méthodes d'interpolation. Echelle en coordonnées métrique Lambert II étendu

1.5.2 Validation par comparaison visuelle de profils

L'autre méthode de comparaison visuelle des méthodes d'interpolation des MNT consiste à comparer un profil réel, créé à partir des données en entrée et des profils tirés des différentes méthodes d'interpolation. Nous l'avons vu plus haut, la plupart des méthodes d'interpolation retenue ici respecte après interpolation, dans la mesure du possible, les valeurs des données en entrée (« exact interpolator »). Aussi pour éviter de créer un profil parfaitement identique au profils issu des données réelles en entrée, les profils tirés de l'interpolation ont été volontairement décalés d'une distance proche de la moitié de l'étendue de la maille crée pour l'interpolation. Nous retiendrons cependant que le fait de décaler le profil impose justement de considérer une marge d'erreur correspondant à l'incertitude morphologique du secteur. Nous regarderons simplement ici si la morphologie globale des profils est bien représentée.

Figure IV 6: comparaison profils mesuré profil théorique donnée par les différentes méthodes d'interpolation

La comparaison des méthodes d'interpolation appliquées aux différents semis de point révèle (Figure IV.6):

-Pour un semis de point de type isobathe : une représentation conforme de la morphologie du profil, sauf pour deux méthodes (Minimum Curvature et Inverse Distance Weight). Il est à noter ici qu'un maillage large imposé pour l'interpolation ne permet pas de prendre en compte les unités morphologiques de type barres d'avant côte, pour le profil en entrée, comme à l'évidence pour le profil tiré de l'interpolation. En revanche la pente générale est respectée.

-Pour un semis de points dense, l'ensemble des méthodes s'adapte globalement bien à ce type de donnée en entrée. La morphologie générale est respectée et les irrégularités du profil sont également mises en valeur. Le krigeage est cependant la méthode qui se rapproche le plus du profil de référence.

-Pour un semis de point de type profil transversal, la méthode d'interpolation la plus pertinente reste le krigeage ; les unités morphologiques sont bien mises en valeur (fosse de lévigation) alors que les autres méthodes ont tendance à lisser la donnée et masquer, notamment pour la triangulation, les variations bathymétriques.

La comparaison visuelle des différentes méthodes de construction des MNT témoigne de l'efficacité du krigeage. Les irrégularités du profil sont mieux respectées, et la représentation des unités morphologiques (fosse de lévigation) est beaucoup plus proche du profil de référence.

Il est important également d'analyser les résidus donnés par le logiciel, des interpolations appliquées aux différents semis de points

1.5.3 Validation statistique.

Afin de valider l'interpolation de points de sondes, nous avons d'abord calculé les résidus de la différence entre les points de sondes mesurés et calculés à partir des différentes méthodes d'interpolation décrites précédemment. Dans un soucis de clarté du graphique et au regard de sa moindre pertinence, mise en évidence dans le paragraphe précédent, la méthode dite « Shepard's Method » est exclue de ce traitement.

Un résidu négatif montre des valeurs de Z interpolées, minorées par rapport à la donnée d'entrée, et un résidu positif donne des valeurs Z interpolées majorées. Deux données sont présentées ici : les résidus moyen et les écarts types entre ces résidus (Figure IV.7).

Le graphique des résidus moyens calculés sur l'ensemble des points de sonde, montre des valeurs proches de 0 pour le krigeage et l'IDW pour les trois types de semis de point (figure IV.7). Le respect des valeurs de Z en entrée est tout à fait satisfaisant bien que sous estimant légèrement la donnée. Les trois autres méthodes sont moins pertinentes avec tantôt une surestimation tantôt une sous-estimation des valeurs réelles.

Figure IV 7: résidus associés aux points des profils générés au moyen des différentes méthodes d'interpolation par rapport à un profil mesuré

Figure IV 8: écart types associés aux points des profils générés au moyen des différentes méthodes d'interpolation par rapport à un profil mesuré

Le graphique des écarts types (figure IV.8) témoigne encore une fois de l'efficacité du krigeage pour traiter différents types de semis de points. On retrouve pour cette méthode des écarts types relativement faibles (entre 0.076 et 0.165). L'IDW est également satisfaisant, bien que présentant des écarts un peu plus importants (entre 0.149 et 0.179).

En conclusion nous mettrons en évidence deux points essentiels dans ce paragraphe méthodologique.

Le traitement par Kriging donne les résultats les moins déformés, quel que soit le type de semis de point en entrée. En termes de marge d'erreur « visuelle » le krigeage propose les meilleures représentations; il offre dans tous les cas une interpolation la plus proche de la réalité et la morphologie générale et locale est bien conservée. En termes de marge d'erreur « statistique » le krigeage propose aussi une interpolation homogène quel que soit le semis de point choisi.

Dans un souci de simplification, une unique méthode d'interpolation a été retenue pour traiter les trois types de semis de point à notre disposition. La méthode d'interpolation par krigeage, au regard des bons résultats qu'elle propose, sera donc retenue pour l'évaluation quantitative de la mobilité du littoral des Saintes Maries de la Mer.

L'autre phénomène qui ressort de cette analyse concerne la difficulté de générer des MNT pertinents à partir de profils transversaux, en particulier avec une fréquence d'acquisition élevée sur l'axe des profils et un espacement important entre eux. Cette répartition spatiale des points en entrée génère des déséquilibres au moment de l'interpolation et de la construction du MNT. Les semis de points denses type 1974 se sont montrés en revanche beaucoup plus pertinents et précis dans le cadre d'un travail de ce type. Nous insistons donc sur la nécessité d'adopter ce type de méthode de sondage dans le cadre d'une évaluation des variations bathymétrique globales futures (longitudinales et transversales).

1.5.4 Marges d'erreurs retenues dans l'analyse.

Sur les MNT effectués à partir de la méthode du krigeage des imperfections apparaissent, en particulier pour les semis de points basés sur des profils transversaux (types relevé 2005). Ces erreurs sont dues, comme décrit plus haut, à l'espacement important des profils bathymétriques et à l'impossibilité de modifier l'anisotropie (linéaire côtier non

rectiligne) pour ces valeurs. L'intérêt est ici d'évaluer l'importance de ces erreurs pour le calcul des volumes que nous effectuerons.

Différents types d'erreur doivent être pris en compte dans ce calcul :

-La marge d'erreur de la mesure elle-même mise en évidence dans les paragraphes précédents inhérente aux méthodes d'acquisition des données.

-La marge d'erreur due à l'interpolation sur les points en entrée.

-La marge d'erreur due à l'interpolation sur les données interpolées

La marge d'erreur sur les points en entrée, logiquement inférieure à celle sur les points interpolés, ne sera pas prise en compte pour l'évaluation des marges d'erreur maximales.

Figure IV 9: représentation des profils mesuré et interpolé pour chaque semis de point à partir de la méthode du krigeage, et écarts associés aux valeurs.

Il est donc important d'effectuer pour les calculs de volume une évaluation de l'erreur sur les secteurs interpolés à partir de la méthode retenue (kirgeage). La méthode de calcul a consisté à supprimer dans le semis de point transversal en entrée, une série de point correspondant à un profil. Un MNT est généré avec les points restants. Ensuite un profil est tiré de la grille interpolée et comparé au profil de points mesuré, ôté à la base. Ainsi les écarts,
(en Z m et en volume m³), que pouvait produire réellement une interpolation par rapport à la mesure réelle, sur des sections éloignées des points d'entrée, ont pu être estimés.

La comparaison des profils mesurés et interpolés (Figure IV.9) montre un écart relativement constant sur les données de 1872 ; la morphologie générale est respectée, mais il faut rappeler qu'ici la densité de points est faible et les profils, qu'ils soient mesurés ou interpolés, tendent à lisser la morphologie.

Les figures montrent un écart relativement constant sur les données de 1974 : la morphologie décalée garde dans l'ensemble l'aspect de la forme du profil mesuré ; de plus les écarts de volume se compensent et sont relativement faibles.

Pour 2005 le profil interpolé colle bien au profil mesuré pour les profondeurs les plus importantes. En revanche sur la partie haute du profil, l'interpolation a lissé la morphologie réelle en relation avec le maillage sélectionné. Les écarts de volumes sont largement supérieurs sur cette donnée (facteur 6).

Les écarts de volumes (tableau IV.3) sont de l'ordre de 0.02 m³.m² pour 1974 alors qu'ils sont de 0.15m³.m² en 1872 et 0.18m³.m² en 2005.

	erreur de la mesure		erreur à l'interpolation	erreur retenue	erreur brute
	en Z (m)	en m ³ .m ²	en m ³ .m ²	m ³ .m ²	10 ³
1872	1.2	1.2	0.15	1.35	19662.4
1895	1.2	1.2	0.18	1.38	20099.3
1974	0.4	0.4	0.02	0.42	5987.9
1980	0.4	0.4	0.18	0.58	8269.1
2005	0.1	0.1	0.18	0.28	5563.7

En revanche, à l'échelle du profil dans son ensemble, les pentes sont respectées.

Tableau IV 3: marge d'erreurs associées aux différents semis de point

Les volumes proposés sont calculés ici en considérant des valeurs d'erreur maximales au niveau de la mesure et de l'interpolation ; il est probable que les chiffres réels sont inférieurs à ces valeurs. A grande échelle spatiale, les marges d'erreur relativement importantes réduisent la possibilité d'obtenir une quantification pertinente des variations bathymétriques sur le secteur du Grand Radeau au phare de la Gachole en particulier pour 1872 et 1895. Cette thématique sera donc abordée préférentiellement à partir des tendances générales.

Ces résultats mettent en tout cas encore en évidence les difficultés que pose le traitement de données issues de méthodes d'acquisition différentes. Pour la réalisation et le traitement de MNT le semis de points aléatoire avec un pas d'échantillonnage relativement serré s'est avéré la seule méthode réellement pertinente. En outre, elle doit être combinée avec des outils d'acquisition en X, Y et Z de haute précision (type campagne 2005), pour espérer rendre compte de façon objective de volumes de sables mobilisés.

2 Les variations locales des pentes

Au-delà de l'étude de la mobilité des fonds à partir des variations des bilans sédimentaires, une démarche complémentaire s'est appuyée sur la comparaison des valeurs de pente de la plage immergée pour chaque date de relevé. Nous chercherons ici à savoir si la stabilisation de la ligne de rivage a entraîné en contre partie une accentuation des valeurs de pente au droit de la ville.

Cette étude s'est appuyée d'une part sur la comparaison des lignes de pente générées pour chaque MNT et d'autre part sur le suivi de cinq profils représentatifs autour des Saintes Maries de la Mer ; deux de part et d'autre de la ville et trois au droit de cette dernière (Figure IV.10).

Les valeurs de pentes, observées sur les profils P1 à l'Ouest, et P5 à l'Est des Saintes Maries de la Mer, seront considérées comme représentatives de l'évolution « naturelle ». Les valeurs de pentes calculées sur les profils au droit de la ville seront considérées comme représentatives de l'évolution « influencée ».

Figure IV 10: localisation des profils

3. Les données climatiques

L'évolution bathymétrique séculaire est largement dépendante des variations d'intensité des conditions météo marines et fluviales. Chaque évènement météo pouvant prendre une importance considérable dans la mobilisation sédimentaire, nous avons choisi de travailler sur des séries continues de données des forçages.

Les débits liquides seront pris en compte pour les données fluviales et, en l'absence de données continues de houle sur le secteur, les surcôtes marines et l'intensité des vents marins serviront définiront l'intensité de l'agitation. Pour ces données marines nous nous baserons sur les seuils définis sur la partie occidentale du delta du Rhône (Suanez 1997, Bruzzy 1998)

3.1 Données fluviales

Faute de mesures à l'embouchure, nous utiliserons les enregistrements de la station de Beaucaire en amont d'Arles (installée et gérée par la Compagnie Nationale du Rhône depuis 1930). Nous savons (Pardé, 1925 ; François, 1857) que le petit Rhône écoule 10 à 15% des eaux du fleuve. (données sont disponibles dans l'étude IRS (2000)).

Figure IV 11: courbe de tarage et modèle associé pour la détermination des débits liquides (Raccasi, thèse en cours)

Notons qu'avant les années 1930, nous disposons d'enregistrements discontinus, à Beaucaire et à Arles. Des mesures de débits/hauteur réalisées en 1868 à Arles fournissent une courbe de tarage (figure IV.11), qui permet d'interpréter les relevés effectués sur ce site à la

fin du XIX^{ème} (Raccasi thèse en cours). Nous savons également (Pont et al 2002, Antonelli, 2002) que les crues jouent un rôle déterminant sur les transports ; solides : 70 à 80% sont véhiculés par les débits supérieurs à 4000m³/. Les débits maxima rendent compte indirectement de l'irrégularité des apports solides.

3.2 Les surcotes marines

Compte tenu de l'absence de mesures de houles à long terme (Sabatier, Samat et al., accepté) la prise en compte des tempêtes sera appréhendée par les données marégraphiques du Grau de la Dent (Salins du Midi). La compilation, la correction et le recalage des données au niveau 0 NGF de 1905 à 2005 ont été effectués par A, Ullmann (thèse en cours). Notons l'absence de données dans les années 1960 et au début des années 1970. Nous entendrons par surcote marine les niveaux marins supérieurs à +40 cm NGF, qui correspondent à la submersion de la plage émergée (Bruzzi.1998).

3.3 Les vents

Cette donnée sera abordée à partir des vitesses moyennes maximales (>11m/s) de vent marin (270° à 90°) (Suanez 1997) durant la période morphologiquement reconnue la plus dynamique (Octobre à Mars). Malheureusement les premières données à notre disposition datent du milieu du 20^{ème} siècle. Ces relevés ont été effectués par Météo France à Sète (1949 à 1970). Nous avons par la suite considéré un site plus proche, en service effectif depuis le début des années 1970, celui de Cap Couronne (1970 à 2003), puis celui des Saintes Maries de la Mer pour la fin de période (2004).

4. Identification des périodes représentatives

La définition des bornes temporelles des périodes caractérisant un fonctionnement « naturel » d'un fonctionnement « influencé » a posé certains problèmes.

En effet nous avons vu qu'à partir de 1940 le rivage des Saintes Maries de la Mer commençait à être stabilisé (notamment au droit et à l'Est des Arènes). Or nous ne disposons pas de relevés bathymétriques correspondant à cette date. De plus nous avons également mis en évidence la nécessité de considérer les évènements météo marins dans la compréhension des bilans sédimentaires : or nous ne disposions pas de données fiables, en tout cas pour les données de surcôte avant 1900, et de vent avant 1949. La période 1872-1895 n'a donc pas pu être retenue comme représentative de l'évolution « naturelle ». Nous avons choisi d'utiliser 1974 comme date charnière. Schématiquement nous considèrerons deux grandes périodes.

-L'intervalle 1872 à 1974 illustrera le fonctionnement dit « naturel ou quasi naturel » en tout cas permettant d'intégrer une longue période d'évolution (1872-1940 soit 68 ans) où le littoral est peu équipé d'ouvrages en enrochement.

-L'intervalle 1974-2005 marqué par l'édification des principaux ouvrages en enrochement illustrera le fonctionnement dit « influencé ».

CHAPITRE 3: RESULTATS

Au vu des conclusions issues du paragraphe précédent, la comparaison des MNT dans le but d'une évaluation des volumes de sables mis en jeux sur le secteur d'étude ne pourra que présenter des tendances générales. Les imprécisions, générées pas l'interpolation, ne permettront pas de quantifier de façon précise l'évolution des fonds. Cependant sur un secteur où les tendances générales relèvent de phénomènes dynamiques séculaires très morphogènes, une comparaison diachronique reste pertinente. Le but est essentiellement d'évaluer la mobilité générale des fonds autour de la ville des Saintes Maries de la Mer et d'identifier si la stabilisation du rivage par les enrochements a modifié les tendances naturelles.

1. Variations des forçages durant la période d'étude

1.1 Les apports fluviaux

La figure IV.12, met en évidence des variations dans les apports liquides du Rhône : la fin du XIX^{ème} siècle a des maxima importants jusque dans les années 1880, avec un débit dépassant 4 fois 11000m³/s. Les débits maxima annuels restent ensuite élevés, avec de nombreuses occurrences à 9000 m³/s, jusque dans les années 1950, puis au cours des années 1970. Les années 1960 et 1980 connaissent une hydrologie plus modeste, avant la forte reprise des dix dernières années (crues de 1993, 1994, 2002 et 2003).

Les débits solides (MES) sont liés aux débits liquides. Cependant les transformations du bassin versant, la diminution de fréquence des très fortes crues, puis les aménagements hydro électriques ont réduit la charge sédimentaire du fleuve. Pont et al (2002) ; Antonelli (2002), Maillet (2005), Provansal et al (sous presse) estiment qu'elle est passée d'environ 50Mt/an au début du siècle à 8-10Mt actuellement sur le Grand Rhône. Elle serait donc de 0.8 à 1Mt/an sur le Petit Rhône. Sur ce dernier, des panneaux de fond, positionnés dans les premiers kilomètres amont pour favoriser la navigation, sont des pièges sédimentaires qui réduisent encore les apports à la mer depuis la fin des années 1970. On connaît très peu la charge de fond du fleuve, certainement le plus utile pour l'alimentation en sable des plages. Elle est généralement estimée à 10% de la charge solide totale (Ibanez XXX) soit 0.08 à 0.1Mt /an sur le Petit Rhône.

Figure IV 12: Débits maximum annuel à Beaucaire

1.2 Les tempêtes

La figure IV.13, permet de d'observer une augmentation de la fréquence et de l'intensité des surcôtes depuis le début du 20^{ème} siècle. Plus précisément, en termes de fréquence, la première moitié du 20^{ème} siècle se caractérise par une relative stabilité des valeurs. La période de 1910 à 1930 présente des faibles valeurs stables et la période 1937 à 1960 montre des valeurs plus importantes mais relativement homogènes. A partir des années 1970, une importante instabilité apparaît avec l'apparition d'épisodes témoignant de fortes fréquences (1974-1980, 1997 et 2001) qui côtoient des épisodes à faible fréquence (1980-1995, 1999, 2004).

En termes d'intensité, la figure témoigne d'une augmentation progressive de l'intensité des surcotes depuis le début du 20^{ème} ; siècle où la relative régularité de la première moitié du 20ème siècle contraste avec l'instabilité des trente dernières années.

Au final, les années 1905 à 1960 montrent une évolution de la fréquence et de l'intensité des surcôtes relativement homogène, peu d'épisodes se démarquent (mis à part 1947 en termes d'intensité). En revanche les trente dernières années montrent une forte irrégularité de ces paramètres. Deux épisodes se démarquent particulièrement : de 1977 à 1980 et la fin des années 90.

Figure IV 13: Fréquence et intensité des surcotes depuis 1905 (Sabatier et al. Accepté, complété)

Figure IV 14: fréquence des vents de mer (entre 270° et 90°) supérieurs ou égaux à 11m/s, pour des relevés entre octobre et mars, toutes les trois heures, à Sète (1949-1970), au Cap Couronne (1970-2003) et aux Saintes Maries de la Mer (2004) (données météo France)

La figure IV.14, témoigne de deux phénomènes. Le premier concerne la tendance générale depuis les années 1950, à savoir une diminution progressive de la fréquence des vents marins les plus intenses entre 1949 et 1976 et une augmentation entre 1976 et 1997. La fréquence de ces vents est irrégulière dans le temps, et la période de 1970 à 1975 apparaît la plus calme.

1.3 Conclusion partielle

Finalement la combinaison des données fluviales (débits liquides maxima) et marines (fréquence et intensité des épisodes de marée « morphogènes » et fréquence des vents supérieurs à 11m/s) permet de définir deux périodes (Figure IV.15):

-du début du 20^{ème} siècle au début des années 70, les débits liquides fluviaux et les paramètres de marée se caractérisent par une relative stabilité alors que dans le même temps une diminution de la fréquence des vents les plus forts apparaît.

Figure IV 15 : débits maximum annuels (beaucaire), fréquence et amplitude de la marée, et fréquence des vents de mer.

A partir de la fin des années 70 une nouvelle tendance apparaît. Elle se caractérise en début de période par une faiblesse des valeurs de débit liquide fluvial maximum et une augmentation des évènements marins les plus intenses (vent et marée). La période montre par la suite une forte irrégularité des dynamiques marines dans un contexte d'augmentation des

fréquences des évènements les plus intenses ; les fortes crues marquant la fin des années 1990.

2. Les bilans sédimentaires

La représentation des MNT (figure IV.16) à partir de la méthode du krigeage permet d'observer une modification des lignes isobathes aux différentes dates. D'une forme globalement curviligne à la fin du 19^{ème} siècle, les isobathes évoluent progressivement vers une forme linéaire en 2005. Ces modifications s'accompagnent d'une évolution importante des volumes sédimentaires entre 0 et -13m de fond que nous présentons sur l'ensemble de la période puis entre chaque relevé bathymétrique.

2.1 Evolution sur l'ensemble de la période

Le bilan sédimentaire global net entre 1872 et 2005 est négatif, de l'ordre de 112 millions de m³ soit des valeurs d'érosion proche de 800 000m 3 an⁻¹ soit - 0.01 m³/m².an⁻¹.

Les sections en accumulation présentent les plus fortes évolutions de l'ordre de +0.15 $m^3/m^2.an^{-1}$ pour une surface globale représentant un peu moins de 5% du linéaire total (essentiellement le Golfe de Beauduc, figure IV.17). Les secteurs en érosion, représentant 60% de la zone d'étude, et montrent des taux de perte de l'ordre de -0.02 $m^3/m^2.an^{-1}$, soit un déficit total de 112 390 923 m^3 ou 845 000 $m^{3}.an^{-1}$.

PARTIE IV : MODIFICATION DES FONDS AU DROIT D'UN RIVAGE STABILISE : LE CAS DU LITTORAL DES SAINTES MARIES DE LA MER.

Figure IV 16: représentation des modèles numériques de terrain pour les cinq dates retenues

Les secteurs accusant les pertes en volume les plus importantes se localisent essentiellement au niveau de l'embouchure du Petit Rhône là où le recul du rivage est le plus marqué. Le déficit s'élève ici à plus de 0.06 m³.an⁻¹ traduisant une érosion verticale de plus de 5m. Un deuxième secteur en fort déficit sédimentaire se situe en face des Saintes Maries de la Mer, au niveau de l'isobathe -10m actuelle : ici les valeurs d'érosion relatives s'élèvent à - 0.05 m³.an⁻¹ pour un enfoncement du profil d'environ 5m. Enfin la troisième zone préférentielle d'érosion se superpose globalement à l'isobathe -5m actuelle (isobathe 2005), les taux d'érosions s'élèvent ici à 0.04 m³.an⁻¹, pour une incision verticale d'environ 4m. Les secteurs considérés comme stables prenant en compte la marge d'erreur de la mesure représentent 35% de la surface étudiée.

Figure IV 17: Bilan sédimentaire en m³.an⁻¹ entre 1872 et 2005

2.2 Evolution par date

L'évolution par période insistera particulièrement sur les secteurs des Saintes Maries de la Mer, là où les taux d'érosion apparaissent les plus importants et où l'enrochement est massif. Il est important également de prendre en compte le contexte dynamique du secteur (dynamiques fluviales et marines) et la chronologie des aménagements.

Avec une érosion s'élevant à un peu plus de 500 000 m³.an⁻¹ soit des valeurs relatives de 0.02 m³/m².an⁻¹, les intervalles 1872-1895 et 1895-1974 connaissent les érosions les moins fortes (figure IV.18). La période 1974-1980 en revanche, avec près de 2,5 millions m³.an⁻¹ soit 0.07 m³.m².an⁻¹, se montre particulièrement érosive. Enfin l'intervalle 1980-2005, présente une érosion moyenne de 1.2 millions m³.an⁻¹ soit -0.035 m³.m².an⁻¹

Figure IV 18: bilan sédimentaire par période

Le calcul des bilans sédimentaires révèle une accentuation des pertes sédimentaires d'un facteur 2 à presque 4, après 1974 (figure IV.18).

Les périodes 1872-1895 et 1895-1974 présentent une évolution des fonds relativement similaire en termes de localisation et d'intensité, avec une érosion caractéristique de l'évolution à long terme, à savoir une accentuation des pertes à l'embouchure du Petit Rhône et au droit de la ville des Saintes Maries de la Mer (Figure IV.19).

La période 1974 -1980 présente une érosion généralisée à l'ensemble du secteur, seules deux sections montrent un gain sédimentaire : la première directement à l'embouchure du Petit Rhône, contradictoire avec l'évolution à long terme, et la deuxième correspond au haut de plage au droit de la ville, là où les ouvrages de défense côtiers ont été les plus nombreux. Les gains sont ici compris entre 0.2 et 0.5 m³.an⁻¹.

La dernière période 1980-2005 présente un déficit moindre et voit le maintien d'une légère accumulation sédimentaire à l'embouchure comprise cependant dans la marge d'erreur des interpolations ($0.1 \text{ m}^3.\text{an}^{-1}$), il est possible que les fortes crues entre 1993-2003 aient joué un rôle important. Mais le secteur largement excédentaire en 1974-1980 montre ici une érosion bien marquée (-0.2/ $-0.3 \text{ m}^3.\text{an}^{-1}$). Les plus forts taux d'érosion après 1980, quant à eux, se concentrent essentiellement à l'Est des Saintes en aval dérive de la ville sans doute en relation avec le blocage d'une partie du transit sédimentaire (-0.2/ $-0.3 \text{ m}^3.\text{an}^{-1}$) par les ouvrages. Enfin, la partie haute des profils (-1 à -2m) au droit des Saintes Maries apparaît relativement stable.

Figure IV 19: Changements bathymétriques en m³.an⁻¹ entre chaque relevé.

Finalement, la tendance générale a permis d'illustrer deux échelles spatiales et temporelles d'évolution, liés à trois processus :

-Une érosion « séculaire » continue et quasi générale des fonds sur le secteur

-Une accumulation au niveau de l'embouchure actuelle du Petit Rhône et autour des ouvrages de défense côtiers après 1974 (blocage du transit longitudinal).

-Une tendance récente qui montre une érosion marquée à l'Est de la ville (aval dérive)

Les bilans sédimentaires, au vu des marges d'erreur importantes, sont critiquables. Cependant ces résultats ne remettent pas en question l'érosion quasi généralisée du secteur. La section littorale proche des Saintes Maries de la Mer a montré les plus fortes évolutions. Une analyse à plus grande échelle de l'évolution de cette section basée sur la comparaison des variations diachronique des valeurs de pente et de profils de plages transversaux, permettra d'illustrer et de caractériser plus finement l'impact des ouvrages en enrochement sur les fonds.

3. L'évolution des pentes

Cette étude s'est appuyée d'une part sur la représentation générale des valeurs de pente calculées à partir des MNT produits, et d'autre part sur des profils de plage transversaux caractéristiques du secteur étudié (figure IV.10).

3.1 Comparaison des cartes de pente

La figure (IV.20) propose une représentation des valeurs de pente sur le secteur d'étude. Les valeurs de pente fortes sont présentées en foncé.

La comparaison des pentes sur les MNT traités (1895, 1974, 1980 et 2005) met en évidence plusieurs phénomènes. Tout d'abord une homogénéité relative des valeurs de pente à la fin du 19^{ème} siècle (1895) qui s'oppose à la forte irrégularité observée en 1974-1980 et 2005. Les trois derniers relevés montrent en effet l'apparition de deux lignes de fortes pentes.

Figure IV 20: Représentation des pentes et de la bathymétrie entre le grand Radeau et le Phare de la Gachole.

La première concerne l'ensemble de la partie supérieure de la plage immergée au droit des Saintes Maries de la Mer (de l'embouchure du petit Rhône à l'Est de la ville) entre 1974 et 2005 et présente un alignement Est-Ouest. Entre 1974 et 2005, si sa position est stable spatialement, elle montre en revanche une augmentation locale des pentes correspondant en 2005, à la limite en mer des ouvrages en enrochement, (brises lames sur la plage de Crin Blanc, le long de la digue Ouest de Port Gardian, le long des brises lames au droit des arènes.

Une deuxième zone se démarque plus au large, autour de l'isobathe -8m. Elle présente une organisation des lignes de pentes maximales en arc de cercle, orienté SSW- Est. Le phénomène majeur est ici la migration de cet arc des fortes pentes vers le NW. La distance de cet arc de fortes pentes (en gris foncé) par rapport à la côte, passe en effet d'environ 850m en 1974 à 750m en 1980, puis 550m en 2005.

Au large de ces deux lignes de forte pente, et en particulier au droit du Petit Rhône, la comparaison des MNT de pente, témoignent d'un amenuisement du stock sédimentaire par régularisation des fonds. Par contre, cette zone de faible pente progresse vers le Nord, témoignant d'une translation horizontale du système plage-avant côte..

Enfin, le Golfe de Beauduc se caractérise par une stabilité des valeurs de pente entre 1872 et 2005.

L'ensemble de ces constats confirme non seulement une érosion importante mais également une modification des fonds avec un raidissement des pentes, conduisant à une fragilisation accentuée du littoral au droit de la ville des Saintes Maries de la Mer.

3.2 Estimation de l'évolution des pentes au droit de la ville

La localisation des lignes de fortes pentes nous renseigne sur leur évolution dans le temps. La première couronne de pente élevée (autour de -2 à -3 m) est stable alors que la deuxième (-6 à -8m) a opéré une migration progressive vers le Nord Ouest entre 1974 et 2005. Nous n'analyserons pas dans le détail les pentes proches de -2 à -3m, car la morphologie de ce secteur qui correspond aux barres de déferlement, est mal reproduite par les relevés de sonde. Dans ce paragraphe nous mettrons en évidence les vitesses de déplacement de cette deuxième ligne de pente (située autour de -6m et à 550 m du rivage, au droit des Saintes Maries de la Mer en 2005) et nous effectuerons une projection de sa position future à partir de l'évolution historique. Ce calcul s'est basé sur les distances mesurées entre la ligne de rivage et la zone de fortes pentes relevée entre chaque MNT.

Nous avons dans un premier temps calculé les vitesses de déplacement au droit de la ville des Saintes Maries de la Mer. Les vitesses de déplacement de la ligne des plus fortes pentes sont de 16m/ an entre 1974 et 1980 et de 8m/ an entre 1980 et 2005, pour une avancée totale vers le rivage d'environ 300 m en 31 ans de cette zone, soit une vitesse de recul moyen de la rupture de pente d'environ 10 à 12m/ an (Tableau IV. 4).

	1974	1980		2005	1974-2005
Distance de la couronne de « forte pente » par rapport au rivage (m)	≈850	≈7:	≈750 ≈550		
Valeur de migration de la couronne (m)	≈100			≈200	≈300
Valeur de migration de la couronne (m/an)	≈16		≈8		≈10
Valeur de migration moyenne retenue sur la période (m/an)	≈ 10 à 12				

Tableau IV 4: valeurs de migration de l'arc des fortes pentes au droit des Saintes Maries de la Mer entre 1974 et 2005.

Figure IV 21: schématisation du recul de la zone des plus fortes pentes (volontairement accentuées) au droit de la ville des Saintes Maries de la Mer

Nous nous sommes ensuite basé sur cette vitesse moyenne de progression et sur la distance par rapport à la côte de cette couronne de forte pente pour effectuer une projection de la migration de cette ligne (Figure IV.21). L'intérêt est de définir une échéance approximative correspondant à la disparition de la zone de pente relativement moins forte susceptible de

dissiper plus efficacement l'énergie de la houle à la côte. Nos résultats montrent, considérant un rythme régulier de migration de la couronne des fortes pentes vers le rivage de -10 à -12 m par an, que dans une quarantaine à une cinquantaine d'année cette zone aura atteint l'aplomb de la ville des Saintes Maries de la Mer.

L'échéance de 40 à 50 ans proposée ici, constitue simplement une projection historique de l'évolution bathymétrique du secteur, et montre que la combinaison de l'ensemble des évolutions sous marines (réduction du potentiel dissipateur des fonds) constituera un risque majeur dans un ½ siècle. Elle ne constitue pas une date butoir précise; des effets locaux (affouillement en pied d'ouvrage, poids de la ville sur le substrat, effets des fortes tempêtes etc...) doivent être pris en compte dans l'évaluation de la stabilité réelle des fonds proches de la ville et notamment pour la détermination de la pente maximale de stabilité. De plus, les données historiques indiquent une diminution des vitesses de recul dans le temps que nous ne prenons pas en compte.

En revanche à l'Est de la ville la deuxième couronne de pente garde une distance quasi constante dans le temps; l'évolution moins rapide des fonds, et le maintien d'un caractère dissipatif de la plage, pourrait constituer un atout dans le cadre d'un rechargement artificiel en sable afin de protéger cette zone du recul du rivage.

3.2 Comparaison des profils (2D)

Rappelons que ce travail s'appuie sur la comparaison de cinq profils tirés de chaque MNT réalisé. Ces profils sont localisés autour de Saintes Maries dans le but d'étudier de façon plus précise la tendance évolutive sur le secteur (figure IV.10).

En terme de morphologie, le profil P1 se différencie des autres par sa forme rectiligne. Les profils P2 à P5 présentent en effet une forme concave (Figure IV.22). Une évolution des fonds spatialement hétérogène apparaît. En effet la profondeur de fermeture sur une période de 133 ans diffère sur les divers profils étudiés. Elle se situe autour de -12m sur les profils P1 et P5 (profils de part et d'autre de la ville) et au-delà de 14 m (non atteinte à partir de la comparaison de nos profils) sur la section au droit de la ville (P2 et P3).

Figure IV 22: évolution des profils depuis 1872 dans le secteur des Saintes Maries de la Mer.

Il ressort aussi qu'à l'intérieur d'une même cellule sédimentaire (Sabatier 2001), de fortes disparités peuvent apparaître. Ici le recul du rivage et l'érosion du pro delta du Petit Rhône conditionnent une variabilité importante des fonds résultant de leur comportement hétérogène face aux conditions hydrodynamiques et aux apports fluviaux.

Le but, dans un premier temps, est d'appréhender ici ces variations bathymétrique sur un plan strictement transversal (profil), d'en extraire les tendances générales en comparant l'évolution des valeurs de pente sur les différents profils et sur la période considérée ; et dans un deuxième temps de savoir quelle est la part de ces divergences imputable à la fixation du rivage au droit de la ville des Saintes Maries de la Mer.

On est en présence, ici, à la fois de profils « morphologiquement stables », aux extrémités du secteur d'étude, dont la pente reste quasi constante dans le temps (P1 et P5) respectivement 0.4 et 0.6%, et de profils « morphologiquement instables » (P2, P3 et P4) avec une pente présentant une tendance à l'accentuation (figure IV.23). Les plus fortes évolutions se retrouvent au droit du littoral stabilisé de la ville, en particulier en P3 où la valeur est multipliée par 3.5 (de 0.35% en 1872 à 1.2% en 2005) mais également en P2 (de 0.35% en 1872 à 0.8% en 2005).

Figure IV 23: évolution des valeurs de pente, des profils entre 1872 et 2005

Entre 1974 et 1980 alors que les pentes sur les profils latéraux à la ville (P1 et P5) montrent une évolution quasi stationnaire, les profils P2 et P3 quant à eux sont soumis à une forte accentuation des pentes (+0.2). En fin de période (1980-2005) les évolutions se stabilisent avec des valeurs de pente approchant celle d'avant 1974.

Il semblerait qu'il y ait eu une déstabilisation des fonds dans les années 70-80 sur la section de littoral au droit de la ville des Saintes Maries de la Mer, puis par la suite (1980-2005), un retour à un rythme d'évolution similaire à la tendance précédente.

Finalement l'analyse des profils transversaux révèle une plus forte augmentation des pentes sur les profils au droit de la ville (P3) et proche de l'embouchure du Petit Rhône (P2), en particulier entre les années 1974 et 1980. L'analyse révèle également une relative stabilité des pentes sur les profils de part et d'autre de la ville témoignant sans doute d'une adaptation du profil aux conditions hydrodynamiques. Le profil P5 en aval dérive de la ville, quant à lui, montre une légère augmentation de la pente entre 1974 et 1980. Après 1980, l'augmentation des valeurs de pente diminue sur les profils au droit de la ville tout en restant supérieure à celles des profils latéraux qui eux maintiennent une valeur de pente constante.

Cette étude des variations des pentes a permis de confirmer le caractère hétérogène du secteur mis en évidence dans l'analyse des bilans sédimentaires. La relative stabilité morphologique des profils de part et d'autre de la ville contraste en effet avec la forte instabilité de la section au droit du secteur stabilisé des Saintes Maries de la Mer...

CHAPITRE 4: DISCUSSION

L'estimation volumétrique de l'évolution des fonds entre 1872 et 2005 a montré des pertes sédimentaires moyennes de l'ordre de 800 000m³/an entre le Grand Radeau et le phare de la Gachole (début du Golfe de Beauduc). Le littoral des Saintes Maries de la Mer s'est montré particulièrement sensible, ici la concentration des houles sur le pro-delta du Petit Rhône (convergence des orthogonales et de l'énergie des houles) induit une « pression » érosive particulièrement marquée. A l'inverse les secteurs beaucoup plus divergents (golfe de Beauduc) sont moins soumis à ces dynamiques et enregistrent un gain sédimentaire. Ces résultats confirment les travaux de Blanc (1977) et Sabatier (2001). Dans le détail la période 1974-2005, considérée comme représentative du fonctionnement influencé, a montré des pertes de 2 (1980-2005) à 4 (1974-1980) fois plus fortes que durant la période 1872-1974, considérée comme représentative du fonctionnement naturel du secteur.

Par la suite, l'étude des variations des pentes à partir de la comparaison diachronique de cinq profils transversaux a pu mettre en évidence deux phénomènes.

L'opposition entre les valeurs de pentes homogènes entre 1872 et 1974 et très hétérogènes entre 1974 et 2005, où deux lignes de fortes pentes apparaissent dans la morphologie sous marine. La première, faiblement mobile, est située dans la partie supérieure de la plage immergée, en particulier le long des ouvrages de protection en enrochement entre l'embouchure du Petit Rhône et la Fourcade. La deuxième est située plus au large vers 850m du rivage en 1974 et tend à migrer rapidement vers la côte (550m en 2005) au droit des Saintes Maries de la Mer, conditionnant une diminution de la zone du « shoaling » de 300m en 31 ans. Cette migration moyenne de l'ordre de 10 à 12m/an, s'est montrée particulièrement rapide entre 1974 et 1980 (16m/an). Au-delà des phénomènes purement dynamiques que peut générer une diminution de la zone de « shoaling », la simulation de l'évolution de la localisation des plus fortes pentes dans le temps a permis de définir au droit de la ville une échéance théorique du risque morphologique majeur dans ½ siècle.

D'autre part l'étude approfondie des pentes au droit et de part et d'autre de la ville a révélé des dynamiques particulières. On assiste en effet à une accentuation des pentes d'un facteur 2 à 3.5 au droit de la ville des Saintes Maries de la Mer entre 1872 et 2005, alors que dans le même temps les profils latéraux à la ville ne montrent pas de modifications significatives de leur valeur de pente. Pour ces profils, les variations semblent se faire selon la règle du « profil d'équilibre ». La plupart des études (Bruun, 1962, Dean, 1991 ; Komar et

McDouglas, 1994) indiquent en effet l'existence d'un profil d'équilibre, dont la forme se maintient parallèlement à elle-même par simple translation latérale, quand le rivage recule ou avance. Lorsque les profils restent globalement identiques, comme c'est le cas pour les profils dits « naturels », on considère que les fonds évoluent en équilibre avec les forçages, essentiellement la houle, en contexte microtidal (Dean, 1992 : Dean et al., 1993). Les faibles variations de la forme générale de ces profils (P1 et P5) depuis plus d'un siècle (1872-2005) permettent d'avancer que l'évolution naturelle du rivage et l'adaptation des pentes aux conditions hydrodynamiques, sur ces sections, se poursuivra tant que les profils auront un espace d'évolution et de recul suffisant. En revanche sur les profils au droit de la ville, cet espace d'évolution est limité, voire stoppé par les ouvrages en enrochement. La règle d'adaptation des profils d'équilibre ne peut pas s'appliquer ici, puisque les profils n'opèrent pas une adaptation transversale et verticale, mais s'organisent autour d'un pivot ayant comme axe le rivage stabilisé des Saintes Marie de la Mer où l'évolution future est extrêmement préoccupante.

Ce chapitre a pu mettre en évidence une évolution bathymétrique très hétérogène avec des périodes plus ou moins dynamiques. La période caractéristique du fonctionnement naturel (1872-1974) a montré les évolutions les moins fortes alors que la période la plus courte, (1974-1980) présente en revanche les évolutions les plus intenses que ce soit en termes de bilan sédimentaire global, de surface caractéristique (érosion accrétion), ou d'évolution des valeurs de pente. Enfin l'intervalle 1980-2005, a montré une tendance érosive deux fois plus importante que durant la période dite de « fonctionnement naturel » mais deux fois moins moins virulente que l'intervalle 1974-1980. Globalement nous avons donc pu ainsi mettre en évidence une accélération des phénomènes érosifs entre les années 1974 et 2005, avec un épisode particulièrement virulent entre 1974 et 1980. 2 hypothèses peuvent être énoncées.

• Le rôle des forçages climatiques

Rappelons en effet que depuis 1950 nous sommes dans un contexte de diminution des débits solides du Rhône (IRS, 2000). Dans ce contexte nous avons mis en évidence à la fin des années 1970 des débits liquides maxima faibles. Notons également, comme nous l'avons signalé dans les premiers paragraphes, qu'au début des années 1970 des panneaux de fond contribuant à une accumulation sédimentaire sur les berges sont implantés. D'autre part, l'analyse des dynamiques marines a révélé, durant cette période, une recrudescence de l'intensité et de la fréquence des vents les plus forts et des surcotes les plus morphogènes.

A ce propos les travaux de Larson (1991) entre autres, ont mis permis de définir le *profil d'équilibre* comme étant la forme finale que le profil de plage adopte sous l'action de conditions de houles constantes pour un granulométrie donnée. Guan-hong Lee et al (1998) ont mis, quant à eux, en évidence, (sur les profils de Duck Caroline du Nord) le rôle prépondérant que joue une fréquence accrue des tempêtes sur la déstabilisation du littoral. Au regard des conditions dynamiques encadrant la période 1974-1980, le littoral est donc soumis à un nouveau contexte dynamique. Ce changement dans les conditions météo marines générales, qui dénote avec une première moitié de 20^{ème} siècle relativement « calme » et homogène en termes de forçages, contribue certainement à déstabiliser et induire une redéfinition du profil d'équilibre sur le secteur générant une accentuation importante du déficit sédimentaire en domaine immergé. Il semble donc que l'augmentation des pertes sédimentaires enregistrées sur le secteur étudié, entre 1974 et 2005, soit liée au changement de contexte fluvial et météo marin. Notons également que si ces pertes sont très importantes entre 1974-1980, elles ont diminuées par la suite entre 1980 et 2005. Il est possible que les fortes crues entre 1990 et 2003 aient contribué à gommer l'effets du renforcement des surcôtes (et donc des tempêtes), et à ralentir de ce fait l'érosion par apports sédimentaires.

• Le rôle des ouvrages en enrochement

Nous pouvons également nous poser la question de l'influence de la multiplication des ouvrages en enrochement et surtout la fixation du rivage de la ville induisant d'importantes perturbations dans l'hydrodynamique côtière (cf. Partie III). Il est possible que la partie émergée (système dune/ plage) ne permette effectivement plus de fournir les stocks de sable nécessaires à la « demande sédimentaire » (Dean, 1986). Le sable qui ne peut être mobilisé en domaine émergé lors des fortes tempêtes est alors fourni par l'avant côte qui subit une érosion accentuée. Pour confirmer ou infirmer l'impact de la stabilisation massive par l'implantation d'ouvrages en enrochement il faut reprendre la chronologie de leur mise en place. La première campagne d'aménagement intervenant au milieu du 20^{ème}, conduit à un première stabilisation du recul du rivage. Par la suite, en 1974 un seul épi est rallongé de 100m, la grande majorité des ouvrages plus lourds (brises lames, épis en T, digue du Port) ne sont effectifs, en fait, qu'à partir du début des années 1980. De plus nous avons vu dans la partie II, que les épis peuvent avoir des conséquences éventuellement au bout des musoirs, mais leur impact sur les fonds plus importants, à 500 ou 800m du rivage, n'a pas été réellement démontré de façon évidente dans la littérature. De plus nous constatons, ici, non pas une accentuation de l'érosion autour des ouvrages mais plutôt une accumulation (notamment autour de l'épi en T). L'implantation des premiers épis ne semble donc pas directement responsable des pertes sédimentaires importantes sur l'avant côte au droit de la ville. Cette hypothèse se vérifie dans la mesure où l'intervalle 1895-1974 ne semble pas témoigner de modifications (bilans sédimentaires) fortes induites par les premiers ouvrages.

Enfin dans la partie III, portant sur l'étude d'une digue longitudinale en position de rivage nous avions pu mettre en évidence une augmentation très rapide des pertes sédimentaires (au droit de la digue) après la construction de l'enrochement. Cette évolution a été mise directement en relation avec une augmentation des phénomènes réflectifs dans la partie supérieure de la plage immergée. Or en considérant, pour le cas des Saintes Maries de la Mer, un premier blocage du rivage à partir du milieu du 20^{ème} siècle, et une faible évolution des bilans sédimentaire en 1895-1974 (globalement identique à 1872-1895) nous ne pouvons pas déterminer de façon évidente d'effet transversal direct des enrochements sur les fonds. Signalons également que les changements morphologiques les plus évidents (évolution des pentes), sur le secteur des Saintes Maries de la Mer, interviennent vers les isobathes -6 à -8m, II est donc difficile, à ces profondeurs, d'y voir la conséquence d'une augmentation des phénomènes réflectifs dus aux ouvrages. Quoi qu'il en soit il est effectivement difficile, en l'absence de mesures dynamiques, de déterminer si l'artificialisation du linéaire côtier des Saintes Maries de la Mer génère les mêmes effets qu'une digue frontale sur les fonds.

Il est en revanche évident, nous l'avons vu plus haut, que cette stabilisation du rivage a modifié dans un contexte érosif, le fonctionnement naturel de recherche d'équilibre du profil de plage. En effet, la translation verticale des profils (augmentation des pentes) devant les enrochements s'oppose à la translation horizontale vers le Nord des profils naturels. Les enrochements ont permis effectivement un maintien voire une accumulation de sable autour d'eux, en particulier les épis, mais l'espace considéré reste infime par rapport aux volumes de sables mobilisés et érodés sur l'ensemble du secteur. L'érosion rapide de la plage Est de la ville (La Fourcade) en relation avec le blocage d'une partie du transit sédimentaire longitudinal est en revanche incontestable et démontre les effets secondaires nocifs de ces techniques d'enrochement déjà démontré dans la partie II.

CHAPITRE 5: CONCLUSION DE LA PARTIE IV

Ce travail a permis dans un premier temps de démontrer, en termes méthodologiques dans le cadre de la réalisation et la comparaison de modèles numériques de terrain, la difficulté de traiter et comparer des semis de point différents. Les semis de point serrés et réguliers se sont avérés les plus pertinents. Nous avons également insisté sur les incertitudes générées par la réalisation de MNT à partir de profils transversaux. Si effectivement les volumes calculés dans le cadre de l'évaluation des bilans sédimentaires sur le secteur du Grand Radeau au phare de la Gachole, doivent être relativisés, l'utilisation de la comparaison des profils comme marqueurs de l'évolution du littoral reste pertinente. En effet les erreurs, en volume, liées à la réalisation des MNT (type de semis de point, interpolation,...) ne remettent pas en question l'importance de la comparaison de profils pour l'évaluation de la mobilité transversal ponctuelle de l'avant côte.

Par la suite, l'étude des forçages météo marins, de la chronologie d'implantation des ouvrages, des bilans sédimentaires et de l'évolution des pentes sur le secteur des Saintes Maries de la Mer ont permis de mettre en évidence une déstabilisation du littoral des Saintes Maries de la Mer dans les années 1970-1980. Cette déstabilisation se réalise dans un contexte général de réduction des apports fluviaux à la côte et de recrudescence de l'intensité et la fréquence des évènements météo marins potentiellement les plus morphogènes. La stabilisation de la ville par les enrochements est à l'origine d'une accumulation sédimentaire entre les ouvrages mais d'une accentuation des pentes sous marines. Il est difficile en revanche, étant donné le peu de dates de relevés bathymétriques dont nous disposions, d'établir un lien direct entre bilans sédimentaires très déficitaires/modifications bathymétriques intenses et implantation des enrochements.

Sur le secteur des Saintes Maries de la Mer, l'érosion des fonds continue et s'est accélérée dans de façon inquiétante dans les années 1970. Les enrochements ont effectivement permis de stabiliser le rivage au niveau de la ville, mais se sont avérés insuffisants pour faire face à une érosion régulière et très profondes de l'avant côte.

Localement l'ensemble des dynamiques présentent sur le secteur (faiblesses des apports sédimentaires fluviaux, intensification des évènements météo marins, blocage d'une partie du transit sédimentaire autour des enrochements) ont induit une accélération inquiétante de l'érosion. C'est le cas notamment de la plage Est des Saintes Maries de la Mer.

CONCLUSION GENERALE

Ce travail de recherche a eu pour but la réalisation d'une analyse des impacts et de l'efficacité des ouvrages en enrochement sur différents sites « ateliers » dans le Golfe du Lion, entre le Cap Leucate et le Grand Rhône. Ce travail s'est organisé autour de 4 axes.

-(1) La définition du contexte fonctionnel du littoral entre le Cap Leucate et le Grand Rhône

-(2) L'étude de l'impact et de l'efficacité des ouvrages transversaux

-(3) L'étude de l'impact d'une digue frontale sur une plage sableuse

-(4) La modification des fonds au droit d'un rivage stabilisé

1. Partie 1 : Contexte fonctionnel actuel du littoral du Golfe du Lion entre le Cap Leucate et le Grand Rhône.

Nous avons présenté dans cette partie, les grands types d'ouvrages en enrochement et la chronologie de leur mise en place, les caractéristiques des forçages et le contexte hydrosédimentaire sur le secteur étudié.

Les ouvrages en enrochement, but, implantation

Les ouvrages transversaux, longitudinaux et les jetées ont commencé à se développer au milieu du XX^{ème} siècle, mais c'est véritablement vers la fin des années 70 que la majorité d'entre eux a été édifiée. Ces ouvrages, destinés originellement à ralentir, voire stopper l'érosion des secteurs littoraux désignés comme les plus sensibles, occupent désormais une place importante dans le paysage littoral du Golfe du Lion. Leur édification repose sur le principe d'une opposition statique aux dynamiques marines, qui constituent sur le secteur étudié un danger pour les activités économiques et humaines.

Des forçages différents

Nous avons pu mettre, dans ce chapitre 2, en évidence deux secteurs aux conditions de forçages relativement différentes: le Delta du Rhône et le Languedoc. Ce dernier est alimenté par les apports sédimentaires irréguliers des petits fleuves côtiers, dont les bilans à long terme sont encore mal connus, alors que le fonctionnement des deux bras du Rhône a fait l'objet de recherches approfondies. On retiendra cependant que l'afflux sédimentaire est actuellement

réduit, à l'exception des plages situées immédiatement à proximité de l'embouchure du Grand Rhône, à l'Est du delta. Les vents potentiellement les plus morphogènes proviennent sur les deux secteurs du Nord Ouest et du Sud Est. Les houles principalement bi directionnelle (Sud Ouest et Sud Est) en Languedoc, se distribuent entre l'Ouest Sud-Ouest et le Sud Est sur le Delta du Rhône. Ce dernier présente également des amplitudes de houle aux diverses périodes de retour plus élevées qu'en Languedoc, où les surcotes marines sont en revanche plus fortes.

Les forçages qui conditionnent le fonctionnement des systèmes littoraux sont donc assez différents selon les différents secteurs du littoral étudié.

Un fonctionnement disparate, organisé en cellules hydro sédimentaires

Le but de ce chapitre était d'abord de définir le cadre dynamique et la tendance d'évolution morphologique à moyen terme du secteur d'étude, en se référant aux résultats des travaux de mes prédécesseurs. Les données du SMLR pour le Languedoc et celles du CEREGE (acquises pendant ou avant ce travail) dans le Delta du Rhône (profils topo bathymétriques et relevés de la ligne de rivage) ont permis d'identifier les tendances récentes (bilans sédimentaires, évaluation de la profondeur de fermeture et variations de la ligne de rivage) sur différents points de relevés répartis entre le Cap Leucate à l'Ouest, et l'embouchure du Grand Rhône à l'Est. La synthèse des données acquises par mes prédécesseurs et celles réalisées dans le cadre de cette thèse a révélé une hétérogénéité géographique entre les différentes cellules

-Le secteur du Languedoc occidental, du Cap Leucate à Saint Pierre sur Mer (cellule 1), s'individualise par l'étroitesse des dunes, de larges plages émergées de sable fin au profil en travers comportant une dépression. La plage sous marine en pente faible présente un système de barre linéaire (barre externe) et festonnée (barre interne), avec un caractère dissipatif bien marqué. La profondeur de fermeture, à moyen terme, y est relativement haute (-4 à -6m). La comparaison des profils de plage y a montré le caractère relativement stable du secteur, sur une échelle de temps courte, de 4 ans (1998-2001). Depuis 1977, les pertes en surfaces diminuent et le recul du rivage ralentit, voire s'inverse. C'est le secteur le moins sensible à l'érosion, bien que les submersions de la plage émergée puissent être fréquentes (Durand 1999).

-Le secteur De Saint Pierre à Frontignan (cellule 2 et 3) a des caractéristiques assez proches. La dune est généralement peu développée ou inexistante et la plage émergée est la plupart du temps relativement étroite (<50m) sans dépression. La plage immergée montre un système de barre linéaire et festonnée sur la cellule 2 et exclusivement linéaire sur la cellule 3. La profondeur de fermeture, à moyen terme, est généralement comprise entre -6 et -8m Le domaine immergé présente une érosion modeste avec localement des pertes importantes (Valras). L'évolution surfacique de ces secteurs montre un ralentissement de l'érosion depuis 1977, mais le recul du rivage y reste important.

-Sur le secteur de Frontignan au Grau du Roi (cellule 4) les plages étroites, ont un profil en travers quasiment rectiligne, descendant de la haute plage vers la basse plage. La plage immergée montre un système de barres linaires. La profondeur de fermeture à moyen terme diminue d'Est en Ouest passant de -6m du côté de Frontignan à -2m au fond du Golfe d'Aigues Mortes (Grau du Roi, Port Camargue). La comparaison des profils de plage à une échelle de temps courte (1998-2001) montre une érosion modeste des fonds qui diminue et s'annule progressivement vers l'Est. L'évolution surfacique a montré une diminution générale des pertes en surface et le recul du rivage est relativement lent après 1977.

Les plages du delta du Rhône (cellules 5 à 8) montrent les plus fortes évolutions en terme de variation des profils de plage ou de mobilité du rivage. Trois grands ensembles s'individualisent.

D'une part les flèches sableuses de l'Espiguette (extrémité de la cellule 5) et de Beauduc (extrémité de la cellule 7) ainsi que le fond du golfe de Beauduc (extrémité de la cellule 5) : Ces zones présentent des plages larges (>200m) en pente faible. Le cordon dunaire y est généralement bien développé (3 à 5m de haut) La partie immergée montre une pente faible à l'intérieur du Golfe de Beauduc (<1%) mais plus forte (>1%) au niveau des flèches sableuses. Un système de barre d'avant côte rectiligne est présent. La comparaison des profils de plage sur une échelle de temps courte (2002-2005) montre une accumulation sédimentaire importante au niveau de l'Espiguette. L'évolution surfacique a montré un important gain sédimentaire sur ces trois zones, et le rivage montre une avancée rapide .

Les secteurs des Salins d'Aigues Mortes, des Saintes Maries de la Mer et des Salins de Giraud se montrent particulièrement sensibles. Les plages y sont très étroites constituées de sable très fin et la profondeur de fermeture se situe autour de -8m. La comparaison des profils de plage a mis en évidence une forte érosion sous marine sur les secteurs du phare de Beauduc et de Petite Camargue et une érosion modeste au niveau du Grau de la Dent. L'évolution surfacique a montré une accentuation des pertes depuis 1977 au niveau de la cellule 7 et sur l'ensemble de ces secteurs le recul du rivage s'est accentué après 1977.

A l'Est du delta le secteur de Piémanson montre un caractère plutôt stable. Les plages sont relativement larges et la comparaison des profils sur une échelle de temps courte (4 ans) montre une tendance à la stabilité voire à l'accumulation. L'évolution surfacique et l'évolution de la ligne de rivage témoignent de la même tendance.

Au final le secteur du delta du Rhône se montre particulièrement sensible à la mobilisation sédimentaire, d'autant plus que les conditions de houle y sont fortes. Il va servir pour l'essentiel de cadre à notre étude. Mais l'ensemble de ces données constitue une synthèse des tendances dynamiques sur les différents secteurs du golfe du Lion. Cette approche était nécessaire à la compréhension des phénomènes locaux, en relation avec les ouvrages en enrochement en domaine microtidal.

L'évolution locale de la ligne de rivage a permis en effet d'identifier l'impact important de différents types d'ouvrages : (1) variations longitudinales des valeurs d'érosion, en relation avec la présence d'ouvrages de protection transversaux (Est des Saintes Maries de la Mer, Les Baronnets, rivage de la grande Motte...), (2) importantes modifications des bilans sédimentaires en relation avec des ouvrages longitudinaux (Digue de Véran), (3) secteurs spécifiques comme les Saintes Maries de la Mer où la position du rivage est fixée, mais où les dynamiques couplées (longitudinales et transversales) génèrent une érosion importante.

2. Partie 2 : Impact et efficacité des enrochements transversaux:

Les batteries d'épis et les digues associées aux graus d'embouchure ont été étudiées. Ces ouvrages sont destinés à barrer les dynamiques *longshore*, afin de limiter la mobilité de la zone du déferlement soumise à des vitesses de transport longitudinal importantes, susceptibles de mobiliser une quantité importante de matériel sur les plages. Ces ouvrages, implantés perpendiculairement au rivage, occupent une place importante dans le Golfe du Lion ; dans les Bouches du Rhône, la moitié des 75km des plages du Delta est équipée d'épis. En Languedoc, environ 25 km sont équipés d'épis et de nombreux graus sont aménagés par des digues perpendiculaires au rivage. L'influence de ces ouvrages a été étudiée par de nombreux auteurs, mais il existe peu d'approches à moyen terme et, surtout, très peu de comparaison, en terme d'évolution morphologique, avant et après leur implantation. Notre analyse s'est focalisée exclusivement sur la partie émergée des plages. L'étude de l'érosion en aval dérive s'est appuyée sur la comparaison diachronique de la position de la ligne de rivage à partir de cartes numérisées, de relevés au DGPS, ou de photographies aériennes (avant et après l'implantation des ouvrages).

L'analyse des évolutions en surface, avant et après l'édification des ouvrages, à l'intérieur et en aval dérive des épis a révélé deux tendances. Trois sites se caractérisent par une diminution du déficit surfacique global (Vendres, Carnon, La Courbe). En effet, l'augmentation du déficit en aval dérive y est compensée par une importante diminution des pertes surfaciques en amont. Quatre sites se caractérisent par une accentuation de l'érosion générale en surface (Frontignan, Les Baronnets, La Fourcade et Véran). La diminution du déficit surfacique en amont dérive ne permet pas de compenser une érosion en augmentation en aval dérive. Nous insistons donc sur l'existence de réponses morphologiques en surface différentes selon les sites.

Les résultats portant sur la caractérisation de l'évolution spécifique de l'érosion en aval dérive (extension transversale, longitudinale,) ont démontré, par la suite, une érosion en aval dérive des ouvrages, généralement doublée par rapport aux valeurs d'érosion en période de fonctionnement naturel. Nous avons ensuite, mis en évidence sur l'ensemble des sites une relation linéaire entre durée (en particulier sur les périodes longues) et valeurs d'érosion en aval dérive (érosion transversale et longitudinale). Ces résultats vont à l'encontre de certains travaux qui supposent une stabilisation rapide de l'érosion en aval dérive des ouvrages implantés.

Nous avons pu également définir sur l'ensemble des sites une relation de proportionnalité entre le transport sédimentaire longshore et l'érosion transversale et longitudinale en aval dérive d'ouvrages transversaux. Sur ce constat, nous avons insisté sur la nécessité de prendre en compte l'intensité du transport sédimentaire dans la compréhension du fonctionnement de plages équipées d'ouvrages transversaux. L'implantation de ce type d'ouvrages a ainsi un impact très négatif sur des secteurs où le transit littoral est important (Les Baronnets, La Fourcade, Véran).

Nous insistons donc sur l'importance de la prise en compte de ces variations spécifiques de la ligne de rivage dans l'élaboration des documents et des plans de prévention des risques en domaine littoral. Nous proposons modestement des relations empiriques qui permettraient aux aménageurs d'intégrer ces résultats

3. Partie 3 : Etude de l'impact d'une digue frontale sur une plage sableuse

Les très fortes variations des valeurs d'érosion à partir de 1995-1998 au niveau du site de Véran, sur le littoral des Salins de Giraud (Bouches du Rhône), suggérait une influence importante des ouvrages longitudinaux (digue frontale) sur l'évolution morphodynamique des plages équipées de ce type d'ouvrage. L'impact de la digue frontale de Véran (2.7 km de long), dont l'édification est directement liée aux importants problèmes d'érosion côtière a été étudiée. L'ouvrage a été édifié pour protéger l'exploitation salinière en arrière, en bloquant le recul de la plage par une stabilisation « définitive » du rivage.

Une synthèse bibliographique nous a permis de souligner les contradictions entre les résultats des travaux portant sur l'étude de l'impact d'une digue frontale sur les fonds sableux adjacents. Notre travail s'était donc fixé, comme objectif, d'apporter un nouveau point de vue sur cette thématique, en nous appuyant sur un suivi bathymétrique et des mesures de courantologies au droit de l'ouvrage.

Les résultats de la campagne de suivi bathymétrique, effectuée au droit et de part et d'autre de l'ouvrage, a permis de comparer l'évolution des fonds avant et après l'édification de la digue sous sa forme actuelle. Ils s'opposent aux travaux qui admettent que la morphologie des fonds au droit et autour des digues n'est pas fondamentalement différente. Au contraire nous montrons l'impact négatif des digues sur la bathymétrie environnante, remettant en question à terme la stabilité de l'ouvrage. Cependant les réponses morphologiques et hydrodynamiques à l'implantation d'une digue dépendent largement des conditions locales : position de la digue sur le profil, tendance érosive à long terme, et type de structures. Nous soulignons de ce fait les difficultés de compréhension des phénomènes d'érosion devant un *seawall* et la difficulté à généraliser l'impact d'un tel ouvrage sur la bathymétrie. Nous avons mis en évidence que l'analyse de l'impact d'une digue doit se faire transversalement, mais aussi longitudinalement.

L'analyse des dynamiques longitudinales et transversales de courant sur deux profils transversaux équipés de courantomètres (ADCP, ADV, S4), au droit et en aval dérive dominante de la digue frontale de Véran. La comparaison des ces données avec celles obtenues par Certain et al (2005), sur le site, morphologiquement comparable, de Sète ont permis d'apporter des éléments nouveaux sur les réponses morphodynamiques liées à l'impact d'une digue frontale.

Nous montrons en effet que la présence de la digue modifie la morphologie du site par une accentuation des pertes sédimentaires et une augmentation de la surface mouillée au droit
de la digue, générant une diminution des vitesses de courant longitudinale. Cette démonstration a permis d'expliquer les différentiels de vitesse, présents dans la fosse externe, sur le profil au droit et en aval dérive de la digue. Nous avons montré ensuite que les vitesses de courant dans la fosse interne, sur le site naturel de Sète, sont généralement plus fortes qu'en pied de digue sur notre site. En revanche ce dernier montre une composante transversale du courant longitudinal exclusivement dirigée vers le large.

Nous démontrons également l'existence de coefficients de réflexion dans les fosses internes et externes sur le profil au droit de la digue, plus importants que sur le profil naturel de Sète (Certain et al 2005). Nous avons ainsi pu mettre en évidence que la superposition d'ondes incidentes et réfléchies était probablement à l'origine de l'accentuation de la mise en suspension des sédiments le long du profil au droit de la digue. Les pertes sédimentaires sont liées à la re-mobilisation probable par les courants locaux. Nous avons de ce fait émis la nécessité d'intégrer, dans le calcul des formules empirique de transport sédimentaire, les coefficients de réflexion.

Ces résultats ont permis, en tout état de cause, de mettre en évidence l'effet négatif incontestable direct et/ou indirect de la digue sur la morphodynamique du site de Véran.

4. Partie 4 : Modifications des fonds au droit d'un rivage stabilisé : le cas du littoral des Saintes Maries de la Mer.

L'urbanisation et de la nécessité de maintenir l'attrait touristique important de la ville sont affrontées au recul séculaire de la ligne de rivage, ce qui a fait naître ici une culture du risque particulièrement précoce. En une cinquantaine d'année et particulièrement depuis la fin des années 1970, le littoral des Saintes Maries de la Mer a été entièrement artificialisé.

Nous avons donc, à partir de la comparaison de cinq relevés bathymétriques, entre 1872 et 2005, étudié les modifications bathymétriques autour du littoral « stabilisé » par des enrochements massifs.

Ce travail a permis dans un premier temps de démontrer, en termes méthodologiques dans le cadre de la réalisation et la comparaison de modèles numériques de terrain, la difficulté de traiter et comparer des semis de point différents. Les semis de point serrés et réguliers se sont avérés les plus pertinents. Nous avons également insisté sur les incertitudes générées par la réalisation de MNT à partir de profils transversaux. Si effectivement les volumes calculés dans le cadre de l'évaluation des bilans sédimentaires, sur le secteur entre le Grand Radeau et le phare de la Gachole, doivent être relativisés, l'utilisation de la comparaison des profils comme marqueur de l'évolution du littoral reste pertinente. En effet les erreurs, en volume, liées à la réalisation des MNT (type de semis de point, interpolation,...) ne remettent pas en question l'importance de la comparaison de profils pour l'évaluation de la mobilité transversal ponctuelle de l'avant côte.

Par la suite, l'étude des forçages météo marins, de la chronologie d'implantation des ouvrages, des bilans sédimentaires et de l'évolution des pentes sur le secteur des Saintes Maries de la Mer ont permis de mettre en évidence une déstabilisation du littoral dans les années 1970-1980. Cette déstabilisation se réalise dans un contexte général de réduction des apports fluviaux à la côte et de recrudescence de l'intensité et la fréquence des évènements météo marins les plus morphogènes. La stabilisation de la ville par les enrochements est à l'origine d'une accumulation sédimentaire entre les ouvrages mais d'une accentuation des pentes sous marines. Il est difficile en revanche, étant donné le peu de dates de relevés bathymétriques dont nous disposions, d'établir un lien direct entre bilans sédimentaires très déficitaires, modifications bathymétriques et implantation des enrochements.

Sur le secteur des Saintes Maries de la Mer, l'érosion des fonds continue et s'est accélérée dans de façon inquiétante dans les années 1970. Les enrochements ont effectivement permis de stabiliser le rivage au niveau de la ville, mais se sont avérés insuffisants pour faire face à une érosion ancienne, régulière et très profondes de l'avant côte. Localement l'ensemble des dynamiques présentes sur le secteur (faiblesses des apports sédimentaires fluviaux, intensification des évènements météo marins, blocage d'une partie du transit sédimentaire autour des enrochements) ont induit une accélération de l'érosion. C'est le cas notamment de la plage Est des Saintes Maries de la Mer.

Finalement, en terme d'aménagements, cette étude a confirmé la nécessité de prendre en compte un certain nombre de précautions dans le cadre d'une protection par des ouvrages en enrochements de littoraux sableux en domaine microtidal. Ces nouvelles données devraient permettre d'affiner les mesures de prévention des risques littoraux.

Il apparaît ainsi essentiel dans le cas d'implantation d'épis de réduire progressivement la distance en mer des ouvrages en fin de batterie, afin de limiter la progression de l'érosion. Si néanmoins ce procédé n'est pas envisagé, s'assurer alors de ne pas porter préjudice, en aval dérive, à des secteurs littoraux à forts enjeux.

De la même façon, le cahier des charges relatif à l'élaboration d'une digue frontale, positionnée au niveau de la ligne de rivage en domaine sableux, doit s'assurer de limiter les phénomènes réflexifs et éviter dans la mesure du possible de modifier le profil d'équilibre originel du secteur. Si ce paramètre n'est pas pris en compte, la digue doit être positionnée plus haut sur la plage émergée à la limite de la mobilité interannuelle des profils transversaux. A la vue des contraintes très importantes qu'entraîne l'implantation des ouvrages en enrochement, il apparaît essentiel de définir avec soin les véritables enjeux économiques, humains et patrimoniaux, afin d'évaluer si l'implantation de ce type d'ouvrages sur les secteurs à « protéger » se justifie.

REFERENCES BIBLIOGRAPHIQUES

Ahrens J P, Seelig W,N, Ward D,L, Allsop W, (1993) Wave runup and wave reflection from coastal Structures, Wave's 93, Ocean wave measurement and analysis, 2nd internationalSymposium, New Orleans, 1993.

Akouango E.(1997): Morphodynamique et dynamique sédimentaire dans le golfe du Lion, thèse de doctorat, université de Perpignan, 1997

Aloïsi J.C., (1986). Sur un modèle de sédimentation deltaïque : contribution à la connaissance des marges passives. Thèse de doctorat d'état, Université de Perpignan, 162 p.

Aminti P., Cammeli C., Cappietti L., Jackson N.L., Nordstrom K.F., and Pranzini E., (2004), Evaluation of Beach Response to submerged Groin Construction at Marina di Ronchi, Italy, Using Field Data and a Numerical Simulation Model., Journal of Coastal Research, SI (33), 99-120, West Palm Beach, Florida, 2004.

Anthony, E.J., (1998), Sediment-wave parametric characterization of beaches. Journal of Coastal Research, 14(1): 347-352.

Antonelli C. (2002), Flux sédimentaires et morphogenèse récente dans le chenal du Rhône aval. Thèse, Université d'Aix-Marseille I, 279 p

Arnaud Fassetta, G, (1997), Evolution du plancher alluvial du Petit Rhône à l'échelle pluriannuelle (delta du Rhône, France du Sud), Géomorphologie:relief processus environnement, 3:237-256.

Asunción Baquerizo and Miguel A. Losada (1998), Longitudinal current induced by oblique waves along coastal structures, Coastal Engineering, Volume 35, Issue 3, November 1998, Pages 211-230

Baba, M ; Thomas, K,V ; (1987), Performance of a seawall with frontal beach, Coastal sediment 87, Proceedings of a speciality Conference on Advances in understanding of coastal Sediment Processes, New Orleans, Louisiana, 1987, p1051-1061.

Badei, P; Kamphuis J,M, Hamilton D,G, (1994), Physical Experiments on the effects of groins on shore morphology, Proceedings of the 24th international Conference coastal Engineering 1994, 1782-1796.

Battjes J.A, (2005), Developments in coastal engineering research, Coastal Engineering 53, 121-132.

Bakker, W.T, (1968), The dynamics of coast with a groyne system. In: 11th Int. Conf. Coastal Eng. (1968).

Balsillie.J.H., an Berg.D.W.(1972), State of groin design and effectiveness, Proceeding of the 13th Coastal Engineering Conference July 10-14, 1972, Vancouver, 1972, p.1367-1383.

Barnet M.R, Asce A.M, Wang H., ,(1988) Effects of a vertical seawall on profile response, 21st Coastal engineering international conference, Malaga, vol 1-3, p 1493-1507.

Barusseau J.P., Akouango E., BA M., Descamps C. et Golf A (1996) .Evidences for short term retreat of the barrier shoreline.Quaternary Science Review, 15, 763-771.

Barusseau, J.P., Brissaud, L., Drapeau, J. et Long., B. (1991), PRocessus hydrodynamqiues et morphosédimentaires de l'environnement des barres d'avant-côte du littoral du Golfe du Lion, Oceano. Acta, vol 11, 163-176

Barusseau et al., (1994). Morphosedimentary multiyear changes on a abarred coast (Gulf of Lions, Mediterranean Sea, France, marine Geology, 122, 47-62.

Barusseau et Saint-Guilly, B., (1981). Disposition, caractères et mode de formation des barres d'avant cote festonnées du littoral du Languedoc-Roussillon, Oceanologica Acta, 4, 3, 297-304.

Basco D.R, Bellomo D.A, Hazelton J.M, Jones B.N (1997), The influence of seawalls on subaerial beach volumes with receding shorelines, Coastal Enginneering 30 (1997) 203-233

Basco D.R, Bellomo D.A, Pollock C., (1992), Statistically significant beach profile change with and without the presence of seawalls, 23rd Coastal Engineering Conference, Venice 1992, p1924-1937.

Basco D.R, (2004), Seawall Impact on Adjacent Beaches: separating Fact from Fiction, Journal of Coastal Research, SI 39, (Proceeding of the 8th International Coastal Symposium). 2004

Basco.D.R., and Pope.J., (2004), Groin Functional Design Guidance from the Coastal Engineering Manual, Journal of Coastal Research, SI (33), 121-130, West Palm Beach, Florida, 2004.

Battjes J.A, (1983)., Surfzone turbulence. In: XX IAHR Congress, Moscow Vol. 7 (1983), pp. 137-140.

Battjes. J.A, (1988), Surf Zone Dynamics, Ann.Rev. Mech. 20:257-93.

Bauer B.O, Allen J.R, Nordstrom K.F, Sherman D.J, (1991) Sediment redistribution in a groin embayment under shore-normal wave approach, Z. Geomorph. N.F Suppl.-Bd.81, 135-148, Stuttgart, 1991.

Birkemeier W.A.(1980), The effect of structures and lake level on bluff and shore erosion in Barrien County, Michigan, 1970-1974, CERC-MR-80-2, april 1980.

Blanc, J.J., (1977). Recherche en sédimentologie appliquée au littoral du delta du Rhône, de Fos au Grau du Roi. Centre National pour l'Exploitation des Océans, 75(1193): 69.

Blanc, J.J., (1979). Protection des littoraux. Méthodes d'études. L'exemple de la Camargue. 78/4104, CNEXO.

Blanc, J.J., (1985). Ruptures d'équilibre au littoral de Provence Occidentale: l'action des tempêtes, relations avec les aménagements. Téthys, 11(3-4): 350-359.

Blanc, J.J. and Froget, C.H., (1981). Mesure et méthode d'étude quantitative de l'érosion des littoraux meubles, exemple de Camargue. Bull. de l'Association Française pour l'étude du Quaternaire, (18)-5: 47-52.

Blanc, J.J. and Jeudy de Grissac, A., (1982). Dangers d'érosion littorale en Petite Camargue (aire occidentale du Delta du Rhône, France). Téthys, 10(4): 349-354.

Blanc, J.J. and Poydenot, F., (1993). Le rivage de Faraman en Camargue (SE France) : un géosystème côtier en déséquilibre; méthodes d'étude-conséquences pratiques. Géologie Méditerranéenne, XX(2): 75-87.

Bodge, K.R. (1992). Representating equilibrium profiles with an exponential expression, Journal of Coastal Research, 8, 47-55.

Bokuniewicz.H.,(2004), Isolated Groins at East Hampton, New York, Journal of Coastal research, West Palm Beach, Florida, 2004.

Bravard, J.P., (1989). La métamorphose des rivières des Alpes françaises à la fin du Moyen-Age et à l'époque moderne. Revue de Géographie de Liège, 25: 145-157.

Bruun P., (1995), The development of Downdrift Erosion, Journal of coastal reseach, 11.4, 1242-1257, Florida 1995.

Bruun P., (2001), The development of Downdrift Erosion: an update of paper in JCR, vol (4), Journal of coastal Research, 17.1, 82-89, Florida, 2001.

Bruun, P., (1962). Sea-level rise as a cause of shore erosion. Journal of Waterways and Harbors Division, WW1: 117-130.

Bruzzi C.,(1998), Les tempêtes et l'évolution morphosédimentaire des plages orientales du delta du Rhône, Thèse de Doctorat, Université de Provence, Aix-Marseille I, 1998. Carter H C, Monroe, C B, Donald E. Guy, Jr, (1986), Lake Erie Shore erosion: the effect of beach width and Shore Protection Structures, JCR, 2,2, 17-23, Fort Lauderdale, 1986

Carter R.W.G, (1980), Human activities and geomorphic processes: the example of recreation pressure ont the Northern Ireland Coast, Z.Geomorph.N.F, Suppl.-Bd.34, 155-164, Stuttgart 1980.

CEPREL, (1995). Schéma d'Orientation pour la protection, la restauration et la gestion des plages du Languedoc-Roussillon, 163 p

Certain R, Barusseau J.P, , Copabianco R, Meuret A, Rey V, Dulou C, Stepanian A., Levoy F, Howa H, (2001), Bottom and shoreline evolutions under wave actions at french Mediterranean site : the beach of Sete : MEDCOAST01, The fifth International Conference on the Mediterranean Coastal Environment 23-27 October 2001, Hammamet, Tunisia.

Certain, R. (2002). Morphodynamique d'une côte sableuse microtidale à barres : le golfe du lion (Languedoc-Roussillon). Thèse, Université de Perpignan, 209p.

Certain.R, Meulé.S, Rey.V and Pinazo.C, (2005), Wave transformation on a microtidal barred beach (Sète, France) Journal of Marine Systems, Volume 58, Issues 1-2, October 2005, Pages 19-34.

CETE Méditerranée (1997) – Evolution du littoral du Languedoc-Roussillon de 1945 à nos jours. Rapport pour le Service Maritime et de Navigation du Languedoc-Roussillon, 52p.

CETMEF ; (1998), Recommandations pour la conception et la réalisation des aménagements de défense du Littoral contre l'action de la mer, (Avril 1998).

Chestnutt, C.B., Schiller, R.E., (1971). Scour of simulated Gulf coast sand beaches due to wave action in front of seawalls and dun barriers. COE report 139, TAMU-SG-71-207, Texas A&M University.

Ching-Piao Tsai, Jiann-Shyang Wang and Chang Lin, (1997), Downrush flow from waves on sloping seawalls, Department of Civil Enginnerring, National Chung-Hsing university, Taichung 402, Taïwan, 1997.

Chrzastowski M.J., (2004) History of Uniquely Designed Groins Along the Chicago Lakeshore, Journal of Coastal Research, SI(33) 19-38, West Palm Beach Forida, 2004.

CIRIA, (1990), Guide on the uses of groynes in coastal engineering, CIRIA Research Project 310, C.A, Fleming ed, CIRIA, London, 1990, 112p.

Clairefond, P., (1977). Le golfe des Saintes-Maries-de-la-Mer (Camargue). Etude sédimentologique aménagement et protection, Université de Luminy, Marseille, 139 pp.

Clarke, D.J. et Ekiot, I.G. (1988). Low-frequency changes of sediment volume on the beachface at Warilla beach, New South Wales, 1975-1985, marine Geology, 189-211.

Coastal Engineering Manual Department of the Army, (1998), Cross-shore sediment transport processes, Part III, chapter 3, 1998, Washington.

Copabianco et al., (1997) ; Depth of closure : a contribution to the reconciliation of theory, practice and evidence, third Conf. Coastal Dynamics, Plymouth, 506-515.

CréOcéan (2001). Recommandations méthodologiques pour le suivi morphologique du littoral, 32p et ann.

CUR, (1987). Manual on artificial beach nourishment, Centre for Civil Engineering Research, Codes and Specifications, Rijkswaterstaat, Delft Hydraulics, Gouda.

Davis R.A., Jr., and Andronaco, M., (1987), Impact of hurricanes on Pinellas County Florida, 1985, Florida Sea Grant Publication, Tech Paper No. 51, 53p

De Ruig, JHM et Louisse, C.J. (1991). Sand budget trends and changes along the Holland coast, Journal of Coastal Research, 7, 4, 1013-1026.

Dean R.G, (1986), Coastal Armoring : effect, principles and mitigation, in 20th International Conference Coastal engineering, 1986, vol2, p 1843-1857.

Dean R.G, (1978), Coastal structures and their interaction with the shoreline, in : applications of stochastic processes in sediment transport-US Japan seminor, 1978, Honolulu, Water ressources publications, Litleton, Co, 1978, 1-16.

Dean R.G, (1993), Terminal Tructures at Ends of Littoral Systems, Journal of Coastal Research, SI, 18195-210, Florida, 1993.

Dean, R.G., (1977), Equilibrium beach profiles: US Atlantic and Gulf Coast Ocean. Engineering Report No.12, University of Delaware.

Dean, R.G., (1987). Coastal sediment processes: towards engineering solutions, Coastal Sediments 87, New Orleans, USA, pp. 1-24.

Dean, R.G., (1991). Equilibrium beach profiles: characteristics and applications. Journal of Coastal Research, 7(1): 53-84.

Dean, R.G., Healy, T.R. and Dommerholt, A.P., (1993). A "bind-folded" test of equilibrium beach profile concepts with New Zealand data. Marine Geology, 109: 253-266.

Dette H,H; Gärtner J, (1987), Time history of sewall on the island of Sylt, Coastal sediment 87, Proceedings of a speciality Conference on Advances in understanding of coastal Sediment Processes, New Orleans, Louisiana, 1987, p1006-1022.

Dette.H.H., Raudkivi, T, and Oumeraci H .(2004), Permeable Pile Groin Field, Journal of Coastal Research, SI(33), 160-187, West Palm Beach, Florida, 2004.

Dolan, R., Fenster, S.M. and Homes, S.J., (1991). Temporal analysis of shoreline recession and accretion. Journal of Coastal Research, 7(3):723-743.

Dong. P, (2004), An assessment of groyne performance in the United Kingdom, Coast. Management. 32 (2004), pp. 203–213.

Dorland, G.M., (1940). Equilibrium sand slopes in front of seawalls. MS Thesis, Department of Civil Engineering, University. of California, Berkeley, 43pp.

Dubois, R.N. (1988). Seasonal changes in beach topography and beach volume in Delaware, Marine Geology, 81, 79-86.

Durand P.,(1999) L'évolution des plages de l'Ouest du Golfe du Lion au Xxeme siècle, thèse de doctorat, Université lumière Lyon 2, 1999

Durand P., (2001) Erosion et protection du littoral de Valras-Plage (Languedoc, France). Un exemple de déstabilisation anthropique d'un système sableux. Geomorphologie : relief, processus, environnement, 2001, n°1, p55-68

El-Bisy M, (2006), Bed changes at toe of inclined seawalls, Ocean Engineering, accepted february 2006.

.El-Fiky. A.F, El-Mongy A.M, and. El-Saeed H.G, (1990), Evaluation of bed change at seawall toe, Ain Shams University, Engineering Bulletin 25 (1990) (3), pp. 36–45.

Escoffier,F.F ; (1951), Design and performance of sea walls in Mississipi Sound, Proceedings-2nd Conference on coastal Engineering, nov 1951, Houston, 1951, p257-267.

Evans O.F, (1940), The low and Ball of the east Shore of LAke Michigan, Journal of Geology, 48, 476-511.

Everts C.H., and. Eldon C.D, (2000), Beach-retention Structures and Wide Sandy Beaches in Southern California, Shore & Beach Vol.68, N°3, July 2000, pp.11-22.

Fanos A.M, Khafagy A.A, Dean R.G, (1995), Protective Works on The Nile Delta Coast; Journal of Coastal Research, 11-2, 516-528, Florida, 1995.

Flemming C.A, (1990), Principles and effectiveness of Groynes, In :Coastal Protection, Pilarczyk (ed), 1990, Balkema, Rotterdam, ISBN 9061911273., Pp 121-156.

Fletcher C.H, Mullane R.A, Richmond B.M, (1997), Beach loss along armored shorelines on Oahu, Hawaiian Islands, journal of Coastal Reseach, 13, 1, 209-215, Florida 1997.

François, L., (1937). Etude sur l'évolution actuelle des côtes de Camargue. Revue de Géographie Régionale: 71-126.

French, P.W., (2001). Costal Defences: processes, problems and solutions. Routledge, London. 366pp.

Galgano, F.A., Jr., (2004), Long-Term Effectiveness of a Groin and Beach Fill System : A Case Study Using Shoreline Change Maps, JCR, SI(33), 3-18, Florida, 2004.

Gensous, B. Tesson, M. Labaune, C. (2003) - The deglacial deposits of the Rhône shelf : stratigraphic organisation and controlling factors - COMDELTA open conference on comparing mediterranean and black sea prodeltas Aix en Provence

Gomez-Pina G., (2004), The Importance of Aesthetic Aspects in The design of Coastal Groins, Journal of Coastal Research, SI (33), 83-98, West Palm Beach, Florida, 2004.

Gonzalez M. and. Medina R, (2001), On the application of static equilibrium bay formulations to natural and man-made beaches, Coast. Eng. 43 (2001), pp. 209–225.

Gorman, L., Morgang, A. and Larson, R., (1998). Monitoring the coastal environment; part IV: mapping, shoreline changes, and bathematric enclosing. Laurent of Coastal Research, 14(1): (1,02)

and bathymetric analysis. Journal of Coastal Research, 14(1): 61-92.

Gracia, V., Jimenez, J.A. and Sanchez-Arcilla, A., (1995). Nearshore profiles along the Ebro delta coast, implications for coastal processes. In: E.Ö. Edit. (Editor), Proceedings of the Second International Conference on the Mediterranean Coastal Environment, MEDCOAST 95, Tarragona, Espagne, pp. 1131-1143.

Granja H.M and G.Soares de Carvalho, (1995) Is the Coastaline « protection » of Portugal by Hard Engineering Structures Effective ?, Journal Of Coastal Research 11, 4, 1229-1241, Florida, 1995.

Granja Helena Maria and G. Soares de Carvalho (1991). The impact of 'protection' structures on the Ofir-Apúlia coastal zone (NW Portugal) Quaternary International, Volume 9, 1991, Pages 81-85

Granja Helena Maria, G. Soares de Carvalho, (1995) Is the Coastline protection of Portugal by hard Engineering Structures Effective ? JCR, 11, 4, 1229-1241, Florida, 1995.

Griggs G.B, Moore, L.J, Tait, J.F, Scott K, Pembrook D, (1996) The effects of storm waves of 1995 on beaches adjacent to a log term seawall monitoring site in northern Monterey bay, California, Shore and Beach, 1996, vol 64 n°1, p 34-39.

Griggs G.B, Tait J.F, (1988) The effects of Coastal protection structures on beaches along northern Monterey bay, California, Journal of Coastal Reseach, SI 4 93-111, Virginia 1988.

Griggs.G.B, (2004), Headlands and Groins : Replicating Naturel Systems, Journal Of Coastal Research, SI (33), west palm Beach, Florida, 2004.

Guillen J, Palanques A., (1993) Longshore bar and trough system in a microtidal, storm-wave dominated coast : The Ebro Delta (Northern Mediterranean), Marine Geology, 115 (1993), 239-252.

Guillén, J. and Palanques, A., (1994). Short-time evolution of a microtidal barrier-lagoon system affected by storm and overwashing: the Trabucador Bar (Ebro delta, NW Mediterranean). Zeitschrift für Geomorphologie, 38(3): 267-281.

Hallermeier, R.J., (1981). A profile zonation for seasonal sand beaches from wave climate. Coastal Engineering, 4: 253-277.

Hamm, L, (1999), cours d'hydraulique maritime, ENTPE.

Hanson H., Kraus.N.C., (1986) Forecast of shoreline change behind multiple coastal structures, Coastal Engineering in Japan, Vol.29, 1986.

Hanson H; Kraus N,C; (1988) Journal of waterway, Port, Coastal, and ocean engineering 1988, 111, n°6, p1079-1083.

Hanson., H and Larson.M., (2004) Wave Directional Characteristics as a Design Parameter for Groin Performance, Journal of Coastal Research, SI (33), 188-197, West Palm beach, Florida, 2004

Hattori M and Kawamata K (1977), Experimental on restoration of beaches backed by seawalls., Coastal Engineering in Japan, Japan Society of Civil Engineers 20 (1977), pp. 55–68.

Hee Jun Lee, Yong Shik Chu and Yong Ahn Park, (1999), Sedimentary processes of fine-grained material and the effect of seawall construction in the Daeho macrotidal flat-nearshore area, northern west coast of Korea Marine Geology, Volume 157, Issues 3-4, May 1999, Pages 171-184

Herbich, J.B ; Murphy H,D ; Van Weele B ; (1965) Scour of flat sand beaches due to wave action in front of sea walls, Coastal Engineering, proceedings of the speciality conference, ASCE, 1965 oct, Santa Barbara, Californie, 1965, p705-727.

Herbich, J.B; (1969) Scour of sand beaches in front of seawall, Proceedings 11th Conference on coastal Engineering, 1969, p.622-643.

Hinton, C. Et Nicholls, R.J. (1998). Spatial and temporal behaviour of depth of closure anlong the Holland coast, Coastal Eng. Conf., 26, 3, 2913-2925.

Horikawa K; et Kuo.C.T; (1966) A study of wave transformation inside the surf zone, Proc. Coastal Engineering Conference, 10th, 1, 217-233; (1966)

Ingle.J.C.jr, (1966) The movement of beach sand : an analysis using fluorescent grains, Amsterdam, Elsevier, 221p, 1966.

Inman et al., (1993). Shore rise and bar berm on ocean beaches, Journal of Geophysica Research, 98, 18, 181-18 199.

Jackson, N,L ; Nordstrom K,F ; (1994) The mobility of beach fill in front of a seawall onan estuarine shoreline, Cliffwood Beach, New Jersey, USA, Ocean and Coastal Management 23 (1994), 149-166.

JCR, (1988), THe effects of Seawalls on the Beach, S.I n°4, CERF, Autumn 1988.

Jimenez J.A, Sanchez-Arcilla A., (1993) Medium-term coastal response at the Ebro delta, Spain. Marine Geology, (1993) 114, 105 105-118

Jones B.N, Basco D.R, (1997) Seawall effects on historically receding shorelines, 25th International Conference on Coastal Engineering Sept 1996, Orlando, p1985

Jones D.F; (1975). THe effects of Vertical Seawalls on Longshore Currents, unpublished PhD Thesis, Department of Coastal an Oceanographic Engineering, University of Florida, Gainesville, FL, 188pp.

Kadib, A.L., (1963). Beach profile as affected by vertical wall. Technical memorandum 134, Beach Erosion Board —Corps of Engineers.

Kana T.W., White T.E., and Mc Kee P.A., (2004) Management and Engineering Guidelines for Groin Rehabilitation, Journal of Coastal Research, SI (33), 57-82, West Palm Beach Florida, 2004.

Kana, T.W., (1995). A mesoscale sediment budget for Long Island, New York. Marine Geology, 126: 87-110.

Kolp O., (1970), Farbsandversuche mit lumineszenten Sanden in Buhhnenfeldern. Ein Beitrag zur Hydrographie der Ufernahen Meereszone, Petermanns Geographische Mitteilungen, 114, Jg., Heft 2, (in German)

Komar P.D., McDougal W.G, (1988) Coastal Erosion and engineering Stuctures : The Oregon Experience, Journal of Coastal Research, Special Issue N°4, pp.77-92, virginia, 1988.

Komar, P.D. and Inman, D.L., (1970). Longshore sand transport on beaches. Journal of Geophysical Research, 75(30): 5914-5927.

Komar, P.D., (1976). Beach process and sedimentation, New-Jersey, 429 pp.

Komar, P.D. Komar, (1998) Beach Processes and Sedimentation (second ed.), Prentice Hall, Englewood Cliffs, NJ (1998).

Kraus et al., (1991). Evaluation of beach erosion and accretion predictor, Coastal Sediments 91, Seattle, 572-587.

Kraus N,C, Hanson H, Blomgren S, H, (1994) Modern functional design of groin systems, Proceedings of the 24th, international Conference, Coastal Engineering, 1994, 1327-1342.

Kraus N.C, Heilman D.J, (1998) Comparison of beach profiles at a seawall and groins, Corpus Christi, Texas. Shore and beach, n°3, 1998, p 4-13

Kraus N.C, (1988) The effects of Seawalls on the beach: an extended literature review, Journal of Coastal Research SI 4 (1988), pp. 1–29. Virginia

Kriebel D.L, (1987) Beach recovery following hurricane Elena, Proceeding Coastal Sediments 87, 1987, 990-1005.

Kriebel D.L, Dally, W.R, and Dean R.G, (1986), Beach profile response following severe erosion events, Coastal and Oceanographic Engineering Department, UF/COEL-86/016, University of Florida, Gainesville, FL.

Kuriyama.Y., Uchiyama.Y., Nakamura., S., and Nagae.T., (2004) Medium term Bathymetric Change around Jetties at Imagireguchi Inlet, Japan, Journal of Coastal Research, SI (33), 223-236, West Palm Beach, Florida, 2004.

L'Homer, A., Bazile, F., Thommeret, J. and Thommeret, Y., (1981). Principales étapes de l'édification du delta du Rhône de7,000 BP à nos jours; variations du niveau marin. Oceanis, 7(4): 389-408.

Lacey, E.M. et Peck, J.A. (1998). Long term beach profile variations along the South shore of Rhode Island, USA, Journal of Coastal Research, 14, 4, 1255-1264.

Lambert. A ;(2006) Protection durable du littoral Varois : fonctionnement hydrosédimentaire de plages microtidales équipées de systèmes de drainages, Thèse de Doctorat, Université de Provence, 2006.

Larson, M et Kraus, N.C. (1991). Mathematical modeling of the fate of beach fill, Coastal Engineering, 16, 1, , 83-114.

Larson, M. et Kraus, N.C. (1989). SBEACH : Numerical model for simulating strom induced beach change, Report 2, US Army Corps of Engineers

Larson, M. et Kraus, N.C., (1994). Temporeal and spatial scales of beach profile change, Duck, North Carolina, Marine Geology, 117, 75-94.

Larson, M., Capobianco, M. et Hanson, H. (2000). Relationship between beach profiles and waves at Duck, North Carolina, determined by canonical correlation analysis. Marine Geology, 163, 1-4, 15, 275-288

Lee, G., Nicholls, R.J., Birkemeie, W.A. and Leatherman, S.P., (1995). A conceptual fairweather-storm model of beach nearshore profile evolution at Duck, North Carolina, USA. Journal of Coastal Research, 11(4): 1157-1166.

Lee, G.-H., Nicholls, R.J. and Birkemeier, W.A., (1998). Storm-driven variability of the beach-nearshore profile at Duck, North Carolina, USA, 1981-1991. Marine Geology, 148: 163-177.

Leont'yev.I.O., (1999) ShortModeling of morphological change due to coastal structure, Coastal Engineering 38, 143-166, 1999.

Leont'yev.I.O., (1997) Short-term shoreline changes due to cross-shore structures : a one-line numerical model, Coastal Engineering 31, 59-75, 1997.

Lizarraga-Arciniega R. and. Fischer D.W, (1998) Coastal erosion Along the Todos Santos Bay, Ensenada, Baja California, Mexico : an Overview, Journal of Coastal Research, 14, 4, 1231-1241, Florida, 1998.

Longuet Higgins, M.S (1970) LOngshore currents generated by obliquely incident sea waves, 2, Journal of Geophysical Research, 75, 6790-6801.

Mac Donald.H.V., and Patterson.D.C.,(1984) Beach repsonse to coastal works Gold Coast, AUstralia, Prroceeding of the 19th Coastal Engineering Conference, September 3-7, 1984, Houston Texas.

Maillet G., (2005); Relations sédimentaires récentes et actuelles entre un fleuve et son delta en milieu microtidal : Exemple de l'embouchure du Rhône Thèse de doctorat, Université de Provence, Aix-. Marseille 1, 301p.

Maillet G (2006) Connexions entre un fleuve et son delta (Partie 1) : évolution du trait de côte du delta du Rhône depuis le milieu du 19e siècle. - (en collab.), Geomorphologie - Relief, processus, environnement, 2,111,124.

Mc Cowan J, (1891) On the solitary wave, Philosophical Magazine, 5eme série, 36, 430-437, 1891

McDougal.W.G., Sturtevant M.A. and Komar.P.D., (1987) Laboratory and field investigations of the impact of shoreline stabilization structures on adjacent properties, In : coastal Sediments 87, New Orlean, 1987, p961-973.

Wood, W.L and Caufield B, (1998) Shore & Beach 1998 Vol 66, N°2, p14-18.

Migniot C., (1977) Action des courants de la houle et du vent sur les sédiments, La houille Blanche, n°1, 1977

Migniot C., (1979) Utilisation des modèles réduits sédimentologiques pour prévoir l'influence d'un ouvrage maritime sur l'évolution d'un littoral, Extrait de la Houille Blanche, n°4/5, 1979

Miles J.R, Russel P.E, Huntley D.A, (2001). Field measurement of sediment dynamics in front of a seawall, institute of Marine Studies University of Plymouth, journal of coastal research, 17.1, 195-206

Moni, N.S, (1973); Systematic study of coastal erosion and defence works in the southwest coast of India, Proceeding of the 13th Coastal Engineering Conference, 1973, p1427-1450.

Millot C., (1990). The Gulf of Lions' hydrodynamics. Continental Shelf Research, 10 (9-11) : 885-894.

Millot C., (1999). Circulation in the Western Mediterranean Sea. Journal of Marine Systems, 20: 423-442.

Morton R.A, (1988) Interactions of storms, Seawalls, and Beaches of the Texas Coast, Journal of Coastal research SI 4 113-134, Virginia

Neelamani S, H. Schüttrumpf, M. Muttray and H. Oumeraci (1999) Prediction of wave pressures on smooth impermeable seawalls Ocean Engineering, Volume 26, Issue 8, August 1999, Pages 739-765

Neelamani S, Sandha N, (2003) Wave reflection characteristics fo plane, dentaded and serrated seawall, Ocean Engineering 30 1507-1533, 2003.

Nicholls, R. J., Birkemeier, W. A. et Hallermeier, R. J. (1996) Application of the depth of closure concept, Proceeding ASCE, Orlando, 4, 3874-3887.

Nicholls, R.J., Birkemeier, W.A. and Lee, G., (1998). Evaluation of depth of closure using data from Duck, NC, USA. Marine Geology, 148: 179-201.

Nir, Y, (1982), Offshore artificial structures and their influence on the Israel and Sinai Mediterranean beaches, 18 Intern. Conf. on Coastal Eng., ASCE, Cape Town vol. 3 (1982), pp. 1837–1856.

O'Brien, M, P; (1984) Wave action at a vertical Sea wall, Shore and Beach, 1984, 52, n°3, p31.

Ollivier P, (2006), Geochimie du Rhône (Flux et bilan d'érosion) et transfert d'eaux souterraines en Camargue (apports des isotopes du Radium. Thèse, Université Paul Cézanne Aix Marseille III

Ömer Yüksek, Hizir Önsoy, Ali Remzi Birben, Ismail Hakki Özölçer, (1995), Coastal erosion in Eastern Black Sea Region, Turkey, Coastal Engineering 26 (1995) 225-239. 1995

Orme A.R, (1980), Energy-sediment interaction around groin (California), Z. Geomorph.N.F, Suppl?-Bd.34, 111-128, Stuttgart, 1980

Ouillon.S., Dartus.D., (1997), Three-dimensional Computation of Flow around Groyne, Journal of Hydraulic Engineering, november 1997, 962-970.

Paskoff R. (1998). Les littoraux, impacts des aménagements sur leur évolution, A. Colin, Paris, 260 p

Pethik, J. (1984). An introduction to coastal geomorphology. London. E. Arnold. 260p.

Pichard, G. (1995). Les crues sur le bas Rhône de 1500 à nos jours. Pour une histoire hydro-climatique. *Méditerranée*, $n^{\circ}3-4$,105-116.

Plant N.G, Griggs G.B, (1992). Interactions between nearshore processes and beach morphology near a Seawall, Journal of Coastal Research 8, 1, 183-200, Florida.

Pons, F, Sabatier F, (2003) Analyse et interprétation des profils bathymétriques du SMNLR, CETE Méditerranée et CEREGE pour le Service Maritime et de Navigation du Languedoc Roussillon, 79 p

Pont, D., (1992). Caractérisation de la charge solide en suspension du Rhône au niveau du palier d'Arles lors d'une crue d'importance moyenne, Université de Lyon, C.N.R.S. U.R.A. 1451.

Pont, D., (1997). Les débits solides du Rhône à proximité de son embouchure : données récentes (1994-1995). Revue de Géographie de Lyon, 72(1): 23-33.

Pont, D. and Bombled, B., (1995). Les débits solides du Rhône à proximité de son embouchure durant l'année hydrologique 94-95, 7ièmes Rencontres de l'Agence Régionale Pour l'Environnement, PACA, Dignes-les-Bains, pp. 283-292.

Pont, D; Simmonnet, J.P, and Walter, AV., (2002), Medium-term Changes in Suspended Sediment Delivery to the Ocean: Consequences of Catchment Heterogeneity and River Management (Rhone River, France): Estuarine, Coastal and Shelf Science, v. 54, p. 1-18.

Provansal, M ; Vella, C ; Arnaud-Fassetta, G ; Sabatier, F and Maillet, G ; (2003), Role of fluvial sediment inputs in the mobility of the Rhône delta coast (France). Participation des apports sédimentaires fluviaux à la mobilité du littoral du delta du Rhône (France): Géomorphologie, v. 4, p. 271-282.

Prusak, Z. et al., (1997). Statistical properties of multiple bars, Coastal Engineering, 31, 263-280.

Putrevu U, Oltman-Shay J, (1995), Effect longshore nonuniformities on longshore current predictions, Journal og Geophysical Reseach, Vol 100, N°C8, p 16,119-6,130.

Quélennec, R.E. (1984). Interet, de l'analyse des profils de plage pour l'étude et la dynamique sédimentaire littorale. Cas du littoral du Nil. XVIIIème Journées de l'Hydrauliques, Marseille.

Quick M.C,(1991) Onshore-offshore sediment transport on beaches, Coastal Engineering, 15 (1991) 313-332

Rakha K.A, Kamphuis J.W, (1997) wave-induced currents in the vicinity of a seawall, coastal engineering, 30, 1997, 23-52

Rankin K.L., Bruno.M.S. ? and Herrington T.O., (2004) Nearshore Currents and sediment Transport Measured at Notched Groins, Journal of Coastal Research, west Palm Florida, 2004.

Raubenheimer B., Guza R.T and Elgar S., (1996) Wave transformation across the inner surf zone, J.Geophysical Resaearch, 75, 1681-1692 ; (1996)

Reniers J. H. M., E. B. Thornton, T. P. Stanton and J. A. Roelvink (2004), Vertical flow structure during Sandy Duck: observations and modelling,, Coastal Engineering, Volume 51, Issue 3, May 2004, Pages 237-260

Rey, V, Certain R, Drevard D, Meuret A, Piazzola J, (2005), Mesures de houles partiellement stationnaires en zones côtières et littorale. Mécanique et Industrie

Ruessink B.G, Kroon A.,(1995) The behaviour of a multiple bar system in a nearshore zone of Terschelling, the Netherlands, 1965-1993, Marine Geology 121, 187-197

Ruessink. B.G, Houwman K.T, Hoekstra P, (1998) The systematic contribution of transporting mechanisms to the cross-shore sediment transport in water depths of 3 to 9 m., Marine Geology 152 (1998) 295-324

Ruggiero Peter and William G. McDougal (2001) An analytic model for the prediction of wave setup, longshore currents and sediment transport on beaches with seawalls Coastal Engineering, Volume 43, Issues 3-4, August 2001, Pages 161-182

Russel R.C.H, Sir Claude Inglis, (1953) The influence of a vertical wall on a beach in front of it, Minesota International Hydraulics convention, Meeting, Sept 1953 ASCE, Mineapolis

Sabatier, F ; Maillet, G ; Provansal, M ; Fleury, T.-J., SUanez, S, and Vella, C., (2006) Sediment budget of the Rhone delta shoreface since the middle of the 19th century: Marine Geology, v. 234, p. 143-157.

Sabatier F, Stive, M, Pons, F (2004) Longshore variations of depth of closure on a microtidal wave dominated coast. In : International Conference of Coastal Engineering 2004, American Society of Civil Engineering, Lisboa : 2329-2339.

Sabatier et al., (2002). Morphodynamique du profil de plage en milieu microtidal : du relevé de terrain au modèle mathématique et numérique, « Geomorphology : from expert opinion to modelling», 26-27 avril 2002, 204-208.

Sabatier F. et Suanez S. (2003) Evolution of the Rhône delta coast since the end of the 19th century. Géomorphologie : relief, processus, environnement, 4, 283-300.

Sabatier F., (2001).Fonctionnement et dynamiques morpho-sédimentaires du littoral du delta du Rhône, thèse de doctorat, Université d'Aix Marseille III

Sabatier F., Provansal M. (2000) Sandbars morphology of Espiguette spit, Mediterranean Sea, France, International Workshop Sandwaves Dynamics, Lille, 23-25 march 2000, 179-187.

Sabatier F., Samat O, Ullmann A et Suanez S. (2006) Connecting large-scale coastal behaviour with coastal management of the Rhone delta. Geomorphology (en révision)

Samat, O ; Lambert, A ; Sabatier, F ; 2004) Erosion des fonds sableux au droit d'une digue, (site de Véran, Golfe du Lion, Méditerranée) VIIIèmes Journées Nationales Génie Côtier-Génie Civil, Compiègne, 2004

Samat, O., Sabatier, F., Lambert, A. (2006), Erosion of the sandy bottom in front of a seawall (Véran site, Gulf of Lions, Mediterranean coast). In: Sanchez-Arcilla, A. (Ed.) - Coastal dynamics 2005. Proceedings of the 5th international conference, April 4-8, 2005, Barcelona, Spain: 1-13. - ASCE. - (CD05).

Sawaragui, T and KawasakiY., (1960) Experimental study on behaviours of scouring at the toe of seadikes by waves, Proceedings of 4th Japanese Coastal Engineering Conference, Japan society of Civil Engineers, 1-2

Sawaragi, T. (1967). "Scouring Due to Wave Action at the Toe of Permeable Coastal Structure", *Proc. 10th Conf.Coastal Eng.*, Tokyo, 1966, ASCE, pp1036-1047.

Sayre W.O, (1987) Coastal erosion on the barrier Islands of Pinellas County, West-central Florida, proceedings Coastal Sediments 87, 1987, 107-1050.

Schoonees J.S., S.G. Pillay, L. Goussard, J.P. Möller and A. Van Tonder, (1999) Groynes as Shore Protection Inside the Port of Richards Bay vol. 3, 5 COPEDEC Conference, Cape Town (1999), pp. 1861–1874.

Schooness.J.S., Theron.A.K., Bevis.D., (2006) Shoreline accretion and sand transport at groynes inside the Port of Richards Bay, Coastal Engineering accepted in june 2006.

Seelig William N, P.E and John P. Ahrens, (1995) Wave reflection and energy dissipation by coastal structures, In Wave forces on Inclined and vertical wall structures. Task Commitee on inclined and vertical wall structures ASCE pp 28-57, 1995

Seelig William N, (1983) Wave reflection from coastal structures, Coastal Structures83', Speciality conference on the design, construction, maintenance and performance of coastal structures, Arlington p961-973, 1983.

Senechal N., Bonneton P, Dupuis H., (2004) Paramétrisation de l'énergie des vagues en zone du surf interne: Profil de plage "plane" et profiles à barres, VIIIèmes Journées Nationales Génie Civil-Génie Côtier, Compiègne, 7-9 septembre 2004.

Sexton, W. J and Moslow, TF,(1981), effects of Hurricane David, 1979, on the beach of seabrook Island, South Carolina, Northeastern Geology, V.3, Nos.3/4, pp 297-305

Shabica C., Meshberg J., Keefe R., and Georges R., (2004) Evolution and performance of groins on a sediment starved coast : the Illinois Shore of Lale Michigan North of Chicago, 1880-2000, Journal of Coastal Research, SI (33), 39-56, West Palm Beach, Florida, 2004.

Sherman D.J, Bauer B.O, Nordtorm K.F, Allen, J.R, (1990) A tracer study of sediment transport in the vicinity of a groin, New York, USA, Journal of coastal research, 6.2, 427-438, 1990.

Short A.D, (1991) Beach systems of central Netherlands coast : processes, morphology and structural impacts in a storm driven multi-bar system, Marine Geology, 107, 1991, 103-137.

Short A.D, (1999) Handbook of beach and shoreface morphodynamics, John Wiley and Sons, LTD, Coastal Studies Unit, School of Geosciences, University of Sydney, Australia, 379 p. 1999.

Shutang Zhu and Allen T. Chwang (2001) Investigations on the reflection behaviour of a slotted seawall Coastal Engineering, Volume 43, Issue 2, June 2001, Pages 93-104

Silvester Richard M, (1977) The role of wave reflection in coastal processes, In proceedings Coastal Sediments 77, 1977, 639-654.

Sogreah, (1995) Etude de l'évolution du littoral sableux de Camargue, Grenoble,1995

Sonu C. J. et James, W. R. (1973) A Markov model for beach profile change. Journal of Geophysical Research, 78, 1462-1471

SPM, (1984), Shore Protection Manuel, Coastal Engineering Research Center, US.

Stive, M.J.F. and de Vriend, H.J., (1995). Modelling shoreface profile evolution. Marine Geology, 126: 235-248.

Stive M.J.F, (1984) Energy dissipation in waves breaking on gentle slopes. COastal Enginnering, 8, 99-127; (1984)

Suanez, S., Bruzzi, C. and Arnoux-Chiavassa, S., (1998). Données récentes sur l'évolution des fonds marins dans le secteur oriental du delta du Rhône (plage Napoléon et flèche de la Gracieuse). Géomorphologie: relief, processus, environnement, 4: 291-312.

Suanez, S. and Provansal, M., (1998). Large scale shoreline change, Rhone delta." Journal of Coastal Research 14: 493-.

Suanez, S. and Bruzzi, C., (1999). Shoreline management and its implications for coastal processes in the eastern part of the Rhône delta. Journal of Coastal Conservation, 5(1): 1-12.

Suanez S., (1997) Dynamiques sédimentaires actuelles et récentes de la frange littorale orientale du delta du Rhône, thèse de doctorat, Université d'Aix Marseille I, 1997.

Svendsen I.A, (1984) Wave heights and set up in a surf zone. COastal Engineering, 8, 303-329 ; (1984)

Tait J.F, and Griggs G.B, (1990), Beach response to the presence of a seawall, Shore and Beach 58 (1990) (2), pp. 11–28.

Trampenau, T, Oumeraci H and Dette H.H., (2004) Hydraulic Functionning of Permeable Pile Groins, Journal of Coastal Research, SI(33), 160-187, West Palm Beach, Florida, 2004

Twu S,W, Lio W,M, (1999) Effects of sewall slopes on scour depth, JCR, 15, 4, 985-990, Florida, 1999. Ullmann et Pirazzoli (in Méditerranée, soumis)

Van Baak M., (2003) Storm-erosion effects on safety of seadikes by probalistic coastal morphologic modelling, J.F.K Competition: Coastal, Inland and Ground Waters.

Vella, C., (1999). Perception et évaluation de la mobilité du littoral holocène sur la marge orientale du delta du Rhône., Université de Provence UI, 225 pp.

Vella, C., Fleury, T-J; Raccasi, G; Provansal, M; Sabatier, F; and Bourcier, M, (2005), Evolution of the Rhone delta plain in the Holocene: Marine Geology, v. 222-223, p. 235-265.

Vella C., Maillet G. & Sabatier F. (2002) Edification pulsée d'un appareil sédimentaire progradant : le lobe de Saint-Ferréol, Delta du Rhône. GDR Marges, Paris, 13-14 février 2002, poster

Vernier, E., (1972). Recherches sur la dynamique sédimentaire du Golfe de Fos. Thèse de 3ème cycle d'Océanographie, Université d'Aix-Marseille, 68pp.

Walker D.J, Dong P, Anastasiou K, (1991) Sediment transport near groynes in the nearshore zone, Journal of Coastal Research, 7-4, 1003-1001, Florida, 1991.

Walton.T.L.,and Sensabaugh.(1978), Seawall designe on sandy beaches University of Florida Grant Report. Wang.P., and Kraus.N.C., Movable-Bed Model Investigation of Groin Notching, Journal of Coastal Research, SI (33), West Palm Beach, Florida, 2004.

Weggel, 1988 J.R. Weggel, (1988) Seawalls: the need for research, dimensional considerations, and a suggested classification, Journal of Coastal Research SI 4 (1988), pp. 29–36.

Wiegel R.L ; (2002) Seawalls, seacliffs, beachrock : what beach effects ? part1, Shore and beach vol70, n°1, p 17-27.

Wood W.L, (1988) Effects of Seawalls on profile adjustement along Great Lakes coastlines, Journal of Coastal Reseach, SI 4 135-146, Virginia 1988.

Wright L.D, Short A.D, (1984) Morphodynamic variability of surf zones and beaches : a synthesis. Marine Geology, 56: 93-118

Zviely D., and Klein.M., (2003) The environmental impact of the Gaza Strip Coastal Constructions, Journal of Coastal Research, Vol 19, n°4, 2003, 1122-1127.

ANNEXES

ANNEXES

ANNEXES 1 : Suivi topobathymétrique

1.Localisation des profils effectués dans le cadre de cette thèse pour le Parc Naturel Régional de Camargue et le Syndicat Mixte de la Camargue Gardoise sur 75 km. (été 2004 et été 2005).

Fond : othophoto IGN 2003 Grand Rhône rau de Dent Golfe de Beauduc Saintes Maries de la Mer 5000m Nord Port Camargue

2. Relevé de la ligne du rivage au DGPS, effectué dans le cadre de cette thèse pour le Parc Naturel Régional de Camargue et le Syndicat Mixte de la Camargue Gardoise, sur 75 km. en avril 2004.

3. Relevé de la ligne du rivage au DGPS, effectué dans le cadre de cette thèse pour le Parc Naturel Régional de Camargue et le Syndicat Mixte de la Camargue Gardoise, sur 82 km. en juillet 2005.

ANNEXES 2 : Récapitulatif des photos orthorectifées

1. Photographies orthorectifée dans le cadre de ce travail

VENDRES							
Date	Missions	échelle	n°cliché	points d'amer	Résolution (m)	Rms	marge d'erreur (m)
1946							
1965	CDP 9136	1:20 000	3359	51	0.742	1.05	0.8
1970	CDP 6455	1:8 000	1235	31	0.662	1	0.7
	CDP 6455	1:8 000	1236	35	0.662	0.92	0.6
	CDP 6455	1:8 000	1237	34	0.662	0.94	0.6
1976	FR 2810 P	1:20 000	1961	35	0.532	0.82	0.4
1977							
1984							
1989	EID	1:15 000		38	0.480	0.74	0.4
1992	FD11	1:25 000	190	33	0.432	0.73	0.3
1995	F2545	1:30 000	58	35	0.385	0.8	0.3
2000							
2001							
2001		pixel					
2005	FD34	68cm	2842	35	0.68	0.68	0.5
FRONTIGNAN							
Date	Missions	échelle	n°cliché	points d'amer	Résolution (m)	Rms	marge d'erreur (m)
1946							
1962							
1970							
1977							
1980							
1982	F 2477	1:30 000	1	38	0.753	0.74	0.6
1986							
1989	EID	1:15 000		41	0.480	0.73	0.4
				38	0.480	0.85	0.4
1992							
1994	F 2743-2744	1.30.000	46	40	0.462	0.87	0.4
1004	F 2743-2744	1:30.000	76	35	0.462	0.75	0.4
1006	ED 24	1:25 000	402	27	0.402	0.73	0.5
1990	FD 34	1:25 000	405	25	0.574	0.03	0.5
	FD 34	1:25 000	405	30	0.574	0.71	0.4
2000	FD 34	1.25 000	009	30	0.374	0.79	0.5
2000							
2001		missal					
2005	FD 34	68cm	1611	35	0.68	0.71	0.5
	FD 34	68cm	1610	37	0.68	0.75	0.5
CARNON							
Date	Missions	échelle	n°cliché	points d'amer	Résolution (m)	Rms	marge d'erreur (m)
1946	F 2844-2842	1:25 000	2	38	0.932	1.12	1.0
	F 2844-2842	1:25 000	309	39	0.932	1.09	1.0
1965	CDP 9017	1:15 000	194	37	0.654	0.92	0.6
	CDP 9017	1:15 000	195		0.654	0.9	0.6
1977							
1984							
1989	EID	1:15 000		41	0.480	0.77	0.4
1990	F 2843	1:30 000	8	34	0.523	0.65	0.3
1997							
2000							
2001							
2005	FD34	pixel 68cm	3314	35	0.68	0.62	0.4
	FD35	pixel 68cm	3494	37	0.68	0.65	0.4

Photo source	Orthophoto	Amers saisis	Amers utilisés	Photo recalée	Ecart type L	Ecart type C
46-250a.bmp	18ortho	7	4	R46-250a.bmp	0.17	1.04
46-250b.bmp	17ortho	9	5	R46-250b.bmp	0.51	0.27
46-251a.bmp	16ortho	9	7	R46-251a.bmp	0.54	0.75
46-251b.bmp	17ortho	9	7	R46-251b.bmp	0.79	0.73
62-1233.bmp	01ortho	9	8	R62-1233.bmp	1.05	1.20
62-1235.bmp	02ortho	9	8	R62-1235.bmp	2.57	3.24
62-1237.bmp	03ortho	5	4	R62-1237.bmp	1.07	1.15
62-1239.bmp	04ortho	8	6	R62-1239.bmp	2.81	3.16
62-1241 bmp	04ortho	8	9	R62-1241 bmp	0.56	0.61
62-1241a bmp	05ortho	7	7	R62-1241a bmp	0.50	0.76
62-1243 hmp	05ortho	6	5	R62-1243 hmp	0.33	0.10
62-1243a bmp	07ortho	5	5	R62-1243a bmp	0.50	1.01
62-1245 hmp	07ortho	8	7	R62-1245 hmp	0.80	0.97
71-1043a hmp	04ortho	15	12	R71-1043a hmp	0.00	0.07
71-1043h hmp	06ortho	10	6	R71-1043b bmp	1 74	1 24
71-1043c hmp	05ortho	10	11	R71-1043c hmp	0.33	0.51
71-10430.0mp	01ortho	14	10	R71-10430.bmp	0.55	0.31
71-1040a.bmp	03ortho	8	6	R71-1040a.bmp	0.57	0.15
71-10480.0mp	03ortho	10	5	R71-10460.0mp	0.00	0.10
71-10400.0mp	13ortho	10	9	R77-68a.hmn	0.39	0.49
77-00a.bmp	01ortho	14	9 11	R77-00a.binp	0.45	0.03
77-000.0mp	03ortho	15	7	R77-000.0mp	0.01	0.57
77-000.0mp	050rtho	0	1	R77-000.0111p	0.40	0.55
77-000.DITIP	030rtho	0	4	R77-000.Dilip	0.13	0.09
77-000.000	070rtho	9	0	R77-00e.billp	0.34	0.02
77-081.DITIP	0901110	0	0	R77-001.0111p	0.35	0.27
77-689.000	1 TOTITIO	10	0	R77-009.0mp	0.49	0.52
77-0011.0111p	0201th0	6	0	R77-0011.0111p	0.13	0.30
77-001.000	0401th0	10	4	R77-001.DITIP	0.30	0.90
20.220 hmp	000rtho	10	11	R77-001.0111p	0.47	0.04
00-23a.bmp	0201110	7	11	Rou-23a.billp	0.00	0.70
80-230.0mp	0301110 12ortho	1	4	Rou-230.0mp	0.60	0.01
80-64a.bmp	130/1/10 01 ortho	0	0	Rou-o4a.bmp	0.92	1.00
80-640.0mp	010rtho	12	0	Rou-o40.0mp	0.53	0.63
80-66.0mp	0201th0	0	0	R80-66.0mp	0.36	0.43
86-123a.bmp	140rtho	1	7	R86-123a.bmp	0.41	0.21
86-1230.0mp	060rtho		1	R00-1230.000	0.60	0.14
86-1230.bmp	0001th0	9	0	R86-1230.0mp	0.44	0.36
86-125a.bmp	03ortho	9	9	R86-125a.bmp	0.28	0.51
86-1250.0mp	010000	1	7	R86-1250.0mp	0.21	0.50
86-1250.0mp	04ortho	11	10	R86-1250.0mp	0.32	0.21
86-127a.bmp	01ortho	17	- 13	R86-127a.bmp	0.82	0.68
86-127b.bmp	03ortho	8	1	R86-127b.bmp	0.53	0.36
86-127C.bmp	02ortho	13	11	R86-127C.bmp	0.54	0.46
92-407a.omp	130rtho	17	14	R92-407a.bmp	0.38	0.43
92-4070.0mp	UTORTNO 45 ortho	19	16	R92-4070.0mp	0.56	0.65
92-407 c.bmp	Ontroct	13	11	R92-407C.bmp	0.40	0.58
92-409a.bmp	02ortho	19	16	R92-409a.pmp	0.56	0.65
92-409b.pmp	04ortho	10	1	R92-409b.bmp	0.87	0.18
92-409c.pmp	03ortho	12	9	R92-409C.bmp	0.33	0.45
92-411a.bmp	04ortho	12	11	R92-411a.bmp	0.42	0.36
92-411b.bmp	Ubortho	14	10	R92-411b.bmp	0.54	0.85
92-411c.bmp	05ortho	11	10	R92-411c.bmp	0.41	0.61

2 Photographies orthorectifiées par le bureau d'étude Ectar

ANNEXES 3 :Impact d'une digue frontale sur l'érosion des fonds (Samat et al 2006)

SAMAT, O., SABATIER, F., LAMBERT, A. (2006) - Erosion of the sandy bottom in front of a seawall (Véran site, Gulf of Lions, Mediterranean coast). In: Sanchez-Arcilla, A. (Ed.) - Coastal dynamics 2005. Proceedings of the 5th international conference, April 4-8, 2005, Barcelona, Spain: 1-13. - ASCE. - (CD05).

EROSION OF THE SANDY BOTTOM IN FRONT OF A SEAWALL (Véran site, Gulf of Lions, Mediterranean coast)

Samat Olivier¹, Sabatier François¹⁻² and Adrien Lambert¹.

¹ CEREGE – Centre Européen de Recherche et d'Enseignement en Géosciences de l'Environnement – Europôle de L'Arbois – BP 80 – 13545 Aix-en-Provence cedex 04, France. <u>samat@cerege.fr</u>, <u>sabatier@cerege.fr</u>, <u>lambert@cerege.fr</u>

² Delft University of Technology, Faculty of Civil Engineering, Hydraulic Engineering Section, Stevinweg 1, 2628 CN Delft, The Netherlands.

Abstract: The analysis of bathymetric profiles opposite and on either side of a seawall built at the shoreline on a barred sandy coast indicates an increase in sedimentary losses and a deepening of the trough at the foot of the structure. A longitudinal pattern is observed in relation to the dominant littoral drift, suggesting that the impact of a seawall should be analysed both transversely and longitudinally.

1 INTRODUCTION

In coastal engineering, it is current practice to use seawalls to protect the coast and limit storm floods. When these seawalls are constructed at the shoreline or in the breaker zone, their impact on bathymetric evolution remains poorly known. Indeed, some authors (Basco, 1992, Dean, 1986; Wiegel, 2002) consider that a seawall does not notably increase the erosion of the submerged part, except for local erosion at the foot of the structure. On the contrary, other authors highlight the negative role of seawalls in relation to a modification of bathymetry and/or an increase in longshore sedimentary transport that amplifies the processes of erosion (Fletcher et al., 1997; Komar and Mc Dougal 1988; Miles et al., 2001). In any case, there are very few field surveys around seawalls, which makes it difficult to draw any generalizations about their effectiveness or their impact on beaches. The more detailed types of study are based solely on topographic profiles that do not cover the breaker zone, and are essentially concerned with mesotidal beaches/?upper shorefaces without bars (Tait and Griggs, 1990; Griggs et al., 1996; Basco et al., 1997).

Following the major problems of coastal erosion and management of the littoral zone of the Camargue (Mediterranean Sea, France), this study presents the results of a bathymetric monitoring programme carried out in front of a seawall on a barred sandy coast in a microtidal setting. The objective is to provide new information on the erosional phenomena

related to the presence of a coastal defence structure. We study the recent evolution (2000-2004) of this sector compared with the evolution of the bottom before the construction of the seawall in its current state in 1998.

In order to answer concretely some of the questions classically posed by the construction of seawalls on a sandy coast, we take up again here the points developed by Dean (1987) and Basco (2004) on the possible effects of such structures. We ask whether the seawall might:

- 1. accelerate erosion of the profile
- 2. increase scour at the foot of the structure
- 3. modify the morphodynamics of the bars
- 4. disturb the profile farther offshore (phenomenon of reflection)
- 5. retard beach recovery
- 6. induce some down drift erosion

2 PRESENTATION OF THE SITE

The studied site is located on the shoreline of the Rhone Delta (Mediterranean Sea, France). The beach profile (D50 = 0.2 mm) forms a barred coast of the "Dissipative and Longshore-Bar-Trough" type according to Wright and Short (1984), with a net longitudinal transport predominantly towards the west. In this microtidal context (<0.3 m), the storms come from the SE quadrant (Hsig=3 m, T=7 s annual, Hsig=6 m extreme) and produce a net longshore transport from east to west in the studied sector.(fig 1)

Figure 1: site location and survey

The seawall now extends along a distance of 2.7 km, and before its construction in 1998, the beach was retreating at rates ranging between - 3 and - 8 m. year⁻¹ (Sabatier and Suanez 2003) mainly due to an increase in the gradient of the longshore transport (Sabatier 2001). However, a reduction in gradient farther west resulted in intense sedimentation (Beauduc

spit). In reality, we could regard the seawall as a dyke before 1998 because it was then separated from the shoreline by a beach undergoing natural retreat (fig 2). Built in the 1970s, this dyke was originally intended to contain storm-related floods. Indeed, these floods endangered the salt industry which uses evaporation basins (salt pans) situated behind the beach.

Following the continuous retreat of the beach and a 50-year storm in 1997, the dyke was completely destroyed and then rebuilt the following year at the same site, in the form of a seawall (Fig. 2).

Figure 2: historical evolution of the seawall

3 METHODS

We have been measuring six lines of profiles since September 2000 (performing four surveys per year) in order to determine the impact of the seawall on the evolution of the bathymetric profiles (Fig 1). Four lines are located in front of the seawall and the two others on either side. These two latter lines are assumed to represent "natural" profiles, and are used as a comparison with lines in front of the seawall. The profiles were carried out using a sounder (error in Z +/- 0.3 m) and a differential GPS embarked on board a rubber boat, and extend offshore to a distance of approximately 1 500 m to reach a water depth of - 10 m. All the profiles were readjusted compared to the NGF based on the tide-gauge data of the day, which were recorded at less than 3 km from the site. Between 1988 and 1999, annual bathymetric profiles were measured on the lines G14, G15 and G16, but these surveys extend only 500 m offshore profile to a depth of approximately - 4 m. In fact, the second bar was not systematically measured as a whole. These three lines of profiles are used here to compare the evolution of the bottom before and after construction of the seawall. The bathymetric profiles are used to calculate sedimentary budgets, the average migration of the shoreface bars, the depth of closure, and to evaluate scour at the foot of the seawall.

In order to supplement the analysis, we list some data on the shoreline retreat published earlier by Suanez and Provansal (1998), Sabatier and Suanez (2003) (1895-1944-1953-1962-

1977-1989-1995-2000-2004), which are integrated into a GIS, to determine if the seawall influences the behaviour of the shoreline down drift (we add 1872, 2002 and 2004).

4 RESULTS

Question 1: is there some acceleration of the erosion of the profile?

In order to determine if the seawall enhances the processes of erosion, we compare the sedimentary budgets of the profiles before (1988-1998) and after (1998-2004) the construction of the seawall. Since the profiles between 1988 and 1999 extend less far offshore than those measured after 2000, we compare the profiles on the part that is common to both periods.

The sector is currently in deficit in terms of average annual sedimentary budget, but up until 1998, there were no significant differences between the profiles. Between 1998 and 2004, the sedimentary budget was always deficient, but the profiles in the centre and west of the seawall exhibit more intense erosion and indicate a pattern in longshore erosion along the direction of the dominant littoral drift (Fig. 3). The easternmost profile (GI14) records a deficit of approximately 0.3 m³.m⁻¹ corresponding to 40 m³.yr⁻¹. The deficit then grows from east to west along the seawall to reach a maximum of almost 1.2 m³.m⁻¹ (250 m³.yr⁻¹) at GI18. Although this deficit begins to fall again towards the west, it remains at high values with an erosion of about 0.8 m³.m⁻¹ (200 m³.yr⁻¹) at GI17. Finally, the total volume of sand loss extrapolated to the whole of the sector between GI14 and GI17 amounts to - 545 000 m³.yr⁻¹. The standard deviation indicates an enhanced variability of the sedimentary budgets on the profiles in front of the seawall (Fig. 3). Finally, these results not only show an increase in the erosion of the profiles after the construction of the seawall but also an increasing of the erosion in the direction of the longshore drift.

Figure 3: Sedimentary budget (in grey, the location of the seawall)

Question 2: is there any increase in scour at the foot of the structure?

All the bathymetric profiles indicate the presence of a deepening at the foot of the seawall. However, this deepening corresponds to the inner trough situated between the shoreline and the inner bar on the natural profiles. Thus, it is appropriate to ask whether this deepening is influenced by the structure or whether it corresponds to the natural morphology of the profile.

Fig. 4: Depth variation of the inner trough since 1988.

Although this question has already been discussed by several authors (Sexton and Moslow, 1981; Kriebel et al., 1986), it still remains a matter of debate (Basco, 2004).

We thus monitored the depth of the inner trough since 1988 to determine if the impact of the seawall increases the depth of the trough by scouring (Fig. 4). The profiles on both sides of the structure display an relatively regular and homogeneous evolution of their trough since 1988, with a slight tendency to deepening. On the other hand, the profiles in front of the seawall (GI15', GI16, GI17) were hollowed out markedly after 1998, with values ranging between - 1 and -2 m between 1988 and 1997, and values from - 4 to -5 m in 2004. In detail, even though the innermost trough of profile GI15 is front of the seawall, it does not show any notable evolution. Here again, we assume a longshore trend in the influence of the seawall because this profile - situated in the east - is upstream of the dominant longshore transport and seems undisturbed by the seawall. Finally, the increased depth of the inner trough in front of the seawall is interpreted as scour directly related to the presence of the structure.

Question 3: is there any modification of bar morphodynamics?

On this point, some authors evoke the presence of strong reflective phenomena to explain the origin of sub-marine morphologies of undulatory type (Kraus, 1988, Barnet et al., 1988). Other authors show the migration of shoreface bars sometimes towards the coast (Morton 1988) and sometimes in the offshore direction (Barnet et al., 1988). We thus evaluated the average sedimentary budget of the bars and their migration between 2000 and 2004. A comparison with the former profiles was not possible because of the ill-adapted surveys between 1988 and 1998.

The morphology of the bathymetric profiles varies longitudinally. There is a transition from two relatively distinct bars in the east (GI14, GI15) to three bars in front of (GI18 and GI16) and to the west of the seawall (GI17). The averaged sedimentary budget of the first two bars (b1 and b2) evolves in a similar way (Fig. 5). We observe a volume loss mainly on the

western part of the seawall, as well as in the median part, and a gain on the eastern part (GI15 and GI14).

Fig. 5: Evolution of the sedimentary budget of the bars

Fig. 6: Migration of the bars

On all the profiles, bar 2 shows the fastest rates of erosion. The sedimentary budget of the first two bars also exhibits a tendency to erosion in the direction of the dominant littoral drift. On GI17 and GI18, the third bar (b3) also shows major losses exceeding those of bar 2 on GI17. The averaged cross-shore displacement of the bars indicates opposite movements between the profiles. The bars updrift and in front of the seawall are moving offshore meanwhile the bars on the "natural" profile GI17, downdrift of the seawall, are moving onshore (Fig. 6). The offshore displacement of the bar 2 is around 20 m.year⁻¹ and there is no longshore significantly changes in front of the seawall. Nevertheless, the inner bar (bar1) behaviour displays slower offshore movement in front of the seawall (around 4 m.year⁻¹) than on the natural profile GI14 and on profile GI15 (around 25 m.year⁻¹). This fact is probably caused by the presence of the seawall which act such as a fix boundary. The onshore migration of the bars (1-2) on profile GI17 is caused by a general shift of the profile shape related to the shoreline retreat.

Question 4: is the profile disturbed farther offshore?

A major criticism of seawalls concerns their eventual offshore influence, linked directly to an increased reflection against the structure which might carry away sediments towards the offshore zone. To analyse this phenomenon, we determined the closure depth and the width of the "active zone" of the profile defined as the distance between the shore and the closure depth. Indeed, we can consider these two parameters as being significant of the active zone of the profile where we seek to evaluate the possible disturbances caused by the seawall.

The "active zone" of the profile extends over a width of 400 m in GI14, then increases significantly from east to west on the profiles in front of the structure to reach 1000 m in GI18 (Fig. 7). The active zone then decreases towards the west in GI17. The depth of closure, which varies from -6.3 to -9.5, shows logically the same tendency. Finally, the depth of closure is much further offshore on the profiles in front of the seawall than on the so-called "natural" profiles. This provides indirect evidence of an offshore influence of the seawall on the beach profile, with a longshore trend from east to west.

Figure 7: Width of the active zone and closure depth of the profile.

Question 5: is beach recovery delayed?

The question of beach recovery is often discussed in the literature. Some authors show that beach recovery is not necessarily slowed down (Barnet et al., 1988; Dean, 1986; Griggs and Tait, 1988; Wiegel, 2002), while others show that seasonal variations can be temporarily accentuated in front of the structure (Jones and Basco, 1997) and that the intensity of the recovery is a function of the width of the beach (Krauss, 1988). However, most studies are concerned with sectors where the seawall occupies a position at the top of the beach, which prevents a direct comparison with our study site. Therefore, our objective here is to determine whether or not the presence of a seawall reduces the processes of beach recovery during periods of calm weather.

Two periods were selected as being representative of beach recovery: February to April 2002 and January to August 2004 (Fig. 8). Our results show that, on the lines situated on the margin or just within the extremities of the structure, the sedimentary budgets are mostly positive or exceptionally negative (January-August 2004 in GI17). On the other hand, on the profiles directly in front of the seawall, beach recovery is non-existent and the sedimentary budgets

are always in deficit. To summarize, the seawall actually reduces the recovery of the beach, but to a variable extent according to the period and profile.

Figure 8: intensity of beach recovery according to profile lines

Question 6: is there some down drift erosion?

The majority of the morphological indices analysed above reflect an increase in the erosion of the beach profile related to the seawall, but also suggest a pattern of longshore drift linked to the dominant sediment transport direction. These results raise the question of down drift erosion due to the seawall. We thus analysed the shoreline retreat between 1872 and 2004 down drift of the seawall, at the level of profile GI17, to determine if this structure accentuates the natural rates of retreat in the sector (fig. 9). Two criteria are used in this analysis: retreat of the shoreline through time and annual rate of the retreat between each measurement period.

Figure 9: location of the line studied and shoreline retreat in the long term (1872-2004)

Figure 10: long term shoreline retreat.

At the level of the selected profile, the shoreline has been retreating since 1872, well before the construction of the seawall (Fig. 10). However, this retreat is not linear and accelerates in time from the 1950s onwards and again in the 1980s. We show that the erosion in this sector occurred prior to the seawall construction, just like the acceleration of the shoreline retreat. Finally, our results fail to give any clear evidence of an enhanced down drift erosion due to the presence of the seawall. While these conclusions are surprising, they only relate to the retreat of the shoreline and a finer scale bathymetric analysis would remain to be carried out.

5 DISCUSSION

The results demonstrate that the seawall actually increases the profile erosion. This erosion is observed from the increase in sedimentary losses, a deepening of the innermost trough at the foot of the structure, a deceleration - even the absence - of beach recovery processes and a deepening of the closure depth in front of the seawall. All these data confirm the results of previous studies (Barnet, et al 1988; Morton 1988) on meso- and macro-tidal beaches subject to higher energy swell. This evolution is most probably caused by an increase in turbulence due to reflective dynamics related to the presence of the seawall, (Kraus 1988). The offshore bars movement cannot be attributed categorically to the presence of the seawall because this phenomenon is also observed on coasts devoid of coastal defence structures (Ruessink and Kroon 1995), in particular on the Mediterranean beaches of the Seawall is most likely felt throughout the breaker zone and probably at greater depths, as shown by the closure depth analysis.

Our results show also an increase in erosion in the direction of the dominant transport, in agreement with Sabatier (2001) who explains erosion in this sector by an increase in longshore sediment transport. Up to now, relatively few studies have focused on the longshore distribution of erosional phenomena, while previous research concentrated especially on the cross-shore evolution of profiles. The present study is compatible with the *in situ* current measurements of Miles et al. (2001), which also show a longitudinal increase in erosion along a seawall. The "natural" profile GI17, which is situated down drift, is probably subject to the influence of the seawall since its longshore effects are in any case apparent in terms of bathymetry. On the other hand, this influence is not perceptible at the level of the long-term retreat of the shoreline because natural shoreline retreat is probably more pronounced than the effects induced by the seawall.

6 CONCLUSION

Our results and interpretations go against some studies (Jones and Basco 1997; Wiegel 2002) proposing there are no essential differences in bottom morphology in front of the seawall. On the contrary, we show the negative impact of the seawall on the surrounding bathymetry, thus calling into question the long-term stability of the structure. However, the morphological and hydrodynamic responses to the construction of a seawall depend largely on the local conditions: position of the seawall on the profile (Rakha. and Kamphuis 1997), erosive tendency in the long-term and type of coastal defence structures (Plant and Griggs 1992). In this context, we highlight the difficulties of understanding erosional phenomena in front of a seawall, since we are interested in case studies and the problems of generalizing the impact of such a structure on bathymetry. Moreover, we stress that the impact of a seawall should be analysed not only transversely but also longitudinally. A series of *in situ* current measurements should allow us to obtain some more concrete information on this phenomenon.

7 ACKNOWLEDGMENT

This work is a contribution to ORE RESYST (CNRS) and GIZCAM (MEDD) French programs. The authors acknowledge the PNRC (Parc Naturel Régional de Camargue) and SALINS for their financial support. A particular thank is given to SALINS for practical access with the boat and tide data.

8 REFERENCES

- Barnet M.R, Asce A.M, Wang H., (1988) "Effects of a vertical seawall on profile response", 21st Coastal engineering international conference, Malaga, vol 1-3, p 1493-1507.
- Basco D.R, Bellomo D.A, Pollock C., (1992) "Statistically significant beach profile change with and without the presence of seawalls", 23rd Coastal Engineering Conference, Venice, p1924-1937.
- Basco D.R, Bellomo D.A, Hazelton J.M, Jones B.N. (1997) "The influence of seawalls on subaerial beach volumes with receding shorelines", Coastal Enginneering 30, 203-233
- Basco D.R. (2004) Seawall Impact on Adjacent Beaches: separating Fact from fiction,
- Journal of Coastal Research, SI 39, (Proceeding of the 8th International Coastal Symposium).
- Certain, R. (2002). "Morphodynamique d'une côte sableuse microtidale à barres : le golfe du lion (Languedoc-Roussillon)". Thèse, Université de Perpignan, 209p.
- Dean R.G. (1978) "Coastal Structure and their interaction with the shoreline, in: application of stochastic processes in sediment transport", US Japan seminar 1978, Honolulu, water resources publications, Litleton, Co, 1-46
- Dean R.G. (1986). "Coastal Armoring: effect, principles and mitigation", in 20th International Conference Coastal engineering, vol2, p 1843-1857.

Dean, R.G., 1987. Coastal sediment processes: towards engineering solutions, Coastal

- Sediments 87, New Orleans, USA, pp. 1-24.
- Fanos A.M, Khafagy A.A; Dean R.G. (1995) "Protective Works on The Nile Delta Coast"; Journal of Coastal Research, 11-2, 516-528.
- Fletcher C.H., Mullane R.A; Richmond B.M. (1996) "Beach loss along armored shorelines on Oahu, Hawaiian Islands", journal of Coastal Reseach, 13, 1, 209-215.
- Griggs G.B., Moore L.J., Tait, J.F, Scott K, and Pembrook D., (1996) "The effects of storm waves of 1995 on beaches adjacent to a log term seawall monitoring site in northern Monterey bay", California, Shore and Beach, vol 64 n°1, p 34-39.
- Griggs G.B., and Tait J.F., (1988) "The effects of Coastal protection structures on beaches along northern Monterey bay, California", Journal of Coastal Reseach, SI 4 93-111.
- Jones B.N., and Basco D.R, (1997) "Seawall effects on historically receding shorelines", 25th International Conference on Coastal Engineering Sept 1996, Orlando, p1985
- Komar P.D., and Mc Dougal W.G, (1988)."Coastal Erosion and engineering structures: the Oregon experience", Journal of Coastal Reseach, SI 4 77-92.
- Kraus N.C., (1988) "The effects of seawalls on the beach: an extended literature review", Journal of Coastal Research SI 4 1-28.
- Kiebel D.L., Dally W.R., and Dean R.G., (1986), "Beach profile response following severe erosion events", Coastal and Oceanographic Engineering Department, UF/COEL-86/016, University of Florida, Gainesville, FL.
- McDougal, W.G., Sturtevant M.A., and Komar P.D., (1987) "Laboratory and field investigations of the impact shoreline stabilization structures on adjacent properties", In Coastal Sediments 87, p961-971
- Miles J.R., Russel P.E., and Huntley D.A., (2001) "Field measurement of sediment dynamics in front of a seawall", institute of Marine Studies University of Plymouth, Journal of Coastal Research, 17.(1), 195-206
- Morton R.A., (1988) "Interactions of storms, Seawalls, and Beaches of the Texas Coast", Journal of Coastal research SI 4 113-134.
- Plant N.G., and Griggs G.B., (1992). "Interactions between nearshore processes and beach morphology near a Seawall", Journal of Coastal Research 8, (1), 183-200.
- Rakha K.A. and Kamphuis J. W.(1997) wave-induced currents in the vicinity of a seawall, coastal engineering, volume 30, march 1997, p23-52
- Ruessink B.G., and Kroon A.,(1995) "The behaviour of a multiple bar system in a nearshore zone of Terschelling", the Netherlands, 1965-1993, Marine Geology 121, 187-197
- Sabatier F., (2001). « Fonctionnement et dynamiques morpho-sédimentaires du littoral du delta du Rhône », thèse de doctorat, Université d'Aix Marseille III, 272p
- Sabatier F., and Provansal M., (2000) "Sandbars morphology of Espiguette spit, Mediterranean Sea, France", International Workshop Sandwaves Dynamics, Lille, 23-25 march 2000, 179-187.
- Sabatier F., and Suanez S., (2003) "Evolution of the Rhône delta coast since the end of the 19th century". Géomorphologie : relief, processus, environnement, 4, 283-300.
- Sexton W.J., and Moslow., TF,(1981), "Effects of Hurricane David, 1979, on the beach of seabrook Island, South Carolina", Northeastern Geology, V.3, Nos.3/4, pp 297-305
- Suanez S., Provansal M. (1998), "Large scale evolution of the littoral of the Rhône delta (Southeast France)". Journal of Coastal Research, 14 (2), 493-501.
- Tait, J.F., Griggs, G.B, (1990) "Beach response to the presence of a seawall", Shore and Beach vol 58, n° 2, p11-28.
- Wiegel R.L, (2002) "Seawalls, seacliffs, beachrock : what beach effects ?" part1, Shore and beach vol 70, n°1, p 17-27.
- Wright L.D., and Short A.D., (1984) "Morphodynamic variability of surf zones and beaches : a synthesis". Marine Geology, 56: 93-118.

TABLES DES FIGURES

PARTIE I	
Figure I 1 Localisation du secteur d'étude d'ouvrages en enrochement	21
Figure I 2 : localisation et date d'implantation des principaux ouvrages entre Cap Leucate et le Grand Rhône	e 30
Figure I 3 Bathymétrie (gauche, source Ifremer) et distribution des sédiments de surface dans la golfe du Lion (droite d'après Aloïsi, 1973))	32
Figure I 4: principaux cours d'eau et leurs caractéristiques (Durand 1999, Certain 2002, Antonelli 2002)	35
Figure I 5: fréquence et direction des vents supérieurs à 11 m.s ⁻¹ mesurés en période hivernale (mars à octobr à Sète (entre 1950 et 2004) et Cap Couronne (entre 1970 et 2003) ; données Météo France.	re) 37
Figure I 6: fréquence, direction et période de retour des houles à Sète et Cap Couronne	40
Figure I 7: Temps de retour des surcotes au Grau de la Dent et à Sète, calculés à partir des données marégraphiques sur la période d'octobre à mars de 1986 à 1995 (Ullamnn et Pirazzoli, in Méditerranée, soumis).	42
Figure I 8: Comparaison des temps de retour des surcotes au Grau de la Dent et à Sète, calculés à partir des données marégraphiques sur la période d'octobre à mars de 1986 à 1995 (Ullamnn et Pirazzoli, in Méditerranée, soumis).	43
Figure I 9 : localisation des différents sites et plages	46
Figure I 10 Photos représentative du littoral de Mateille à Sérignan	47
Figure I 11: Photos représentative du littoral de Marseillan à l'Espiguette	48
Figure I 12: Photos représentative du littoral des Baronnets à Piemanson	49
Figure I 13: Caractéristiques des barres d'avant côte dans le Golfe du Lion (Certain 2002, complété)	50
Figure I 14: caractéristiques granulométriques des plages du Golfe du Lion	51
Figure I 15: Direction et intensité du transport sédimentaire dominant dans le golfe du Lion	54
Figure I 16 : Localisation des profils topo-bathymétriques	56 59
Figure I 18: Exemple de détermination de la profondeur de fermeture. Dc est déterminée à partir d'un seuil minimal de l'écart type qui s'appuie sur la marge d'erreur des relevés bathymétriques.	61
Figure I 19: Bilans sédimentaires dans le golfe du Lion	62
Figure I 20 Variations longitudinales de Dc dans le golfe du Lion (points) entre 1998 -2001 (Cell1, Cell2, Cell3, Cell4, Sabatier et al., 2004) et 2000-2005 (Cell5, Cell6, Cell7, Cell8, cette étude). Les cercles blancs indiquent un rechargement et les triangles indiquent la présente d'un substrat dur sur le profil (Sabatier et al. 2004)	., 64
Figure I 21: Cartographie des variations de Dc dans le Golfe du Lion. Dc est déterminée entre 1998-2001 en Languedoc Roussillon et 2000-2005 dans le Delta du Rhône.	65

Figure I 22: Bilans surfaciques (m²/m/an) des cellules avant (1950-1977) et après (1977-2001) en Languedoc Roussillon et 1977-2005 sur le Delta du Rhône) les grandes périodes d'aménagement. 69

*Figure I 23: Variation du rivage avant (1950-1977) et après les grandes périodes d'implantation des ouvrages 1977-2001 en Languedoc Roussillon et 1977-2005 sur le Delta du Rhône)*70

 Figure I 24: Evolution des variations du rivage en m/an avant (1950-1977) et après (1977-2001/2005) les grandes périodes d'aménagements
 72

 Figure I 25: intensité et fréquence des surcôtes (Sabatier et al accepté)
 75

PARTIE 2

Figure II 1: courants et variations du rivages induits par des épis imperméables (a) et perméables (b). Schématisation en coupe (c) du courant longshore et des profils de plage avec et sans épis (perméables) (Trampenau et al 2004)	88
	_ 00
Figure II 2: localisation des sites	_ 91
Figure II 3: date de création des ouvrages de protection sur les différents sites. La flèche désigne le sens du transport sédimentaire dominant.	_ 93
Figure II 4: effet de relief sur le rendu de la photo aérienne	103
Figure II 5: méthodes de ré échantillonnage	104
Figure II 6: identification de l'influence des ouvrages en fonction des campagnes d'enrochement, exemple de Baronnets.	es 107
Figure II 7: Identification des intervalles de temps et surfaces de calcul prises en compte, en fonction des périodes d'aménagement, pour l'évaluation des bilans sédimentaires surfaciques	108
Figure II 8: Méthode d'évaluation des bilans de surface	109
Figure II 9: paramètres pris en compte pour l'étude de l'érosion en aval dérive	110
Figure II 10: évolution du rivage au grau de Vendres	114
Figure II 11: évolution du rivage à Frontignan	116
Figure II 12: évolution du rivage à Carnon	117
Figure II 13: évolution du rivage aux Baronnets	119
Figure II 14: évolution du rivage à la Fourcade	120
Figure II 15: évolution du rivage à Véran	122
Figure II 16: évolution du rivage à la Courbe	123
Figure II 17: Bilan sédimentaire en surface en m ² autour des ouvrages	126

Figure II 18: rapport érosion (naturelle/influencée en aval dérive) / temps Figure II 19: évolution de l'extension longitudinale de l'érosion dans le temps	129 131
Figure II 20: distance du maximum d'érosion en fonction de la durée d'observation.	132
Figure II 21: relation entre érosion transversale (r), et distance du maximum d'érosion (lr) par rapport au dernier épi	136
Figure II 22 comparaison de (lr) mesuré et (lr) calculé (a), et validation de la relation lr=9.5r (b)	136
Figure II 23: relation entre érosion longitudinale (r), et distance du maximum d'érosion (lr) par rapport au dernier	137
Figure II 24 : comparaison de (lr) mesuré et (lr) calculé (a), et validation de la relation $lr=0.39s$ (b)	138
Figure II 25: relation entre érosion transversale moyenne (r) et longitudinale moyenne (s)	139
Figure II 26 : Comparaison de s calculé et s mesuré (a) et Validité de la relation s=18.8r (b)	139
Figure II 27: relation entre le transport sédimentaire (Q) et l'érosion transversale (r) sur les secteurs du Gre de Vendres (1), Frontignan 1 (2.1) et 2 (2.2), Carnon (3), Les Baronnets (4), La Fourcade (5), Véran (6) et 1 Courbe (7)	au La 140
Figure II 28 · relation entre le transport sédimentaire (Ω) et l'érosion longitudinale (s) sur les secteurs du G	rau

Figure II 28: relation entre le transport sédimentaire (Q) et l'érosion longitudinale (s) sur les secteurs du Grau de Vendres (1), Frontignan 1 (2.1) et 2 (2.2), Carnon (3), Les Baronnets (4), La Fourcade (5), Véran (6) et La Courbe (7)______ 141

PARTIE 3

Figure III 1: Schématisation des effets possibles de l'implantation d'une digue (Kraus 1988, Complété)	154
Figure III 2:Classification de la localisation des « seawall » selon Weggel (1988) Hi : houle incidente, Hr : houle réfléchie, HWL : Hight Water Level, LWL : Low Water Level	156
Figure III 3 : localisation et photographie de la digue	159
Figure III 4: localisation et suivis du site	163
Figure III 5: evolution historique de la digue	163
Figure III 6: bilans sédimentaires (en gris: la localisation de la digue)	165
Figure III 7: variation de la profondeur de la fosse interne depuis 1988	166
Figure III 8: Evolution du bilan sédimentaire des barres	167
Figure III 9: Migration des barres Figure III 10: Largeur de la zone active et profondeur de fermeture des profils	167 168
Figure III 11: intensité du processus de reconstruction de la plage par profil.	169
Figure III 14: Appareillage utilisé pour mesurer le courant	175

Figure III 15: Schéma et photo d'installation d'un ADCP sur un fond sableux	177
Figure III 16: Schéma et photo d'installation de l'ADV	179
Figure III 17: localisation des appareils de mesure du courant et de la houle sur le site d'étude	181
Figure III 18: identification des cellules correspondantes sur trois appareils (ADCP et ADV)	184
Figure III 19: Evolution du rapport γ en fonction de la profondeur dans la zone du surf interne (Senechal et 2004)	al., 186
Figure III 20 : comparaison des données de hauteur significative de houle mesurées en G116 au dessus de l'ADCP et de l'ADV (Hs est déterminée sur l'ADV par rapport au déplacement des particules vers le nord (Hscuh), vers l'Est (Hscw)et par rapport à la pression (Hscp) et écart associés (vert)	188
Figure III 21: intensité du courant et écart type entre valeur mesurées au dessus de l'ADCP et de l'ADV (rou associés (Cm désigne la vitesse du courant)	ige) 190
Figure III 22: comparaison des directions de courant au dessus de l'ADCP et de l'ADV, et résidus (rouge)_	191
Figure III 23: Détermination des écarts à la normale à la plage. (fond ortho-photographie IGN 1998)	193
Figure III 24: méthode de rectification des composantes de courant par rapport à la normale à la plage	194
Figure III 25a: détermination du coefficient de réflexion dans un cas idéal pour une houle non déferlante su fond plat	r 196

PARTIE 4

Figure IV 1: localisation du secteur d'étude. Source C.Vella, 1999, 2005 et l'Homer et al 1981 270

*Figure IV 2: localisation et période de création des ouvrages de défense (fond :ortho photographie IGN, 2003)*272

 Figure IV 3: représentation du semis de point type « isobathe » en fonction des méthodes d'interpolation.

 Echelles en coordonnées métriques Lambert II étendu______
 282

Figure IV 4: représentation du semis de point type « semis de points denses » en fonction des méthodes d'interpolation. Echelles en coordonnées métriques Lambert II étendu. 283

Figure IV 5: représentation du semis de point type profils transversaux en fonction des méthodes d'interpolation. Echelle en coordonnées métrique Lambert II étendu 283

Figure IV 6: comparaison profils mesuré profil théorique donnée par les différentes méthodes d'interpolation 284

Figure IV 7: résidus associés aux points des profils générés au moyen des différentes méthodes d'interpolation par rapport à un profil mesuré ______ 286

Figure IV 8: écart types associés aux points des profils générés au moyen des différentes méthodes d'interpolation par rapport à un profil mesuré_______286

Figure IV 9: représentation des profils mesuré et interpolé pour chaque semis de point à partir de la méthode du krigeage, et écarts associés aux valeurs. 288

Figure IV 10: localisation des profils	290
Figure IV 11: courbe de tarage et modèle associé pour la détermination des débits liquides (Raccasi, se cours)	thèse en 291
Figure IV 12: Débits maximum annuel à Beaucaire	296
Figure IV 13: Fréquence et intensité des surcôtes depuis 1905 (Sabatier et al. Accepté, complété)	297
Figure IV 14: fréquence des vents de mer (entre 270° et 90°) supérieurs ou égaux à 11m/s, pour des entre octobre et mars, toutes les trois heures, à Sète (1949-1970), au Cap Couronne (1970-2003) et aux Maries de la Mer (2004) (données météo France)	relevés Saintes 297
Figure IV 15 : débits maximum annuels (beaucaire), fréquence et amplitude de la marée, et fréquence de mer.	les vents 298
Figure IV 16: représentation des modèles numériques de terrain pour les cinq dates retenues	300
Figure IV 17: Bilan sédimentaire en m ³ .an ⁻¹ entre 1872 et 2005	301
Figure IV 18: bilan sédimentaire par période	302
Figure IV 19: Changements bathymétriques en m ³ .an ⁻¹ entre chaque relevé.	303
Figure IV 20: Représentation des pentes et de la bathymétrie entre le grand Radeau et le Phare de la C	Gachole. 305
Figure IV 21: schématisation du recul de la zone des plus fortes pentes (volontairement accentuées) au la ville des Saintes Maries de la Mer	droit de 307
Figure IV 22: évolution des profils depuis 1872 dans le secteur des Saintes Maries de la Mer.	309
Figure IV 23: évolution des valeurs de pente, des profils entre 1872 et 2005	310

TABLEAUX

PARTIE 1

Tableau I 1: Présentation des différentes sources de données de houle	39
Tableau I 2: récapitulatif de la localisation des profils utilisés. La numérotation du nom du profil, correspond une ligne de référence du SMNLR qui décrit la distance en mètres depuis l'Espagne. Cette numérotation a été étendue au delta du Rhône.	à 57
Tableau I 3: source des relevés de la ligne de rivage.	67
Tableau I 4: tableau récapitulatif des bilans surfaciaues par cellule avant (1950-1977) et après (1977-2001 en	,

Tableau I 4: tableau récapitulatif des bilans surfaciques par cellule avant (1950-1977) et après (1977-2001 enLanguedoc et 1977-2005 sur le Delta du Rhône) les grandes périodes d'aménagement.68

PARTIE 2

Tableau II 1: Propriété fonctionnelle attribuée aux épis et leur évaluation critique accepté ou non par la littérature scientifique (d'après Kraus et al 1994)	_ 86
Tableau II 2: récapitulatif des sources et dates traitées	_ 98
Tableau II 3:Récapitulatif des photographies recalées dans le cadre de ce travail	_ 99
Tableau II 4: évaluation de la précision de référence	103
Tableau II 5: Incertitude liée à la correction géométrique des photos	105
Tableau II 6: Récapitulatifs des valeurs de transport sédimentaire longitudinal annuel.	111
Tableau II 7: Récapitulatifs des paramètres structuraux des épis en 2005.	111
Tableau II 8: recul du rivage (r) avant et après l'implantation des ouvrages sur les différents sites étudiés. L calculs ont été effectués sur une section située en aval dérive des ouvrages	es 128
Tableau II 9: matrice de corrélation utilisant les caractéristiques moyennes annuelles de l'érosion en aval dérive	135
Tableau II 10:erreur moyenne quadratique associée à la relation entre lr et r sur chaque site	136
Tableau II 11:erreur moyenne quadratile associée à la relation entre lr et s sur chaque site	138
Tableau II 12:erreur moyenne quadratique associée à la relation entre lr et s sur chaque site	139

PARTIE 3 :

Tableau III 1: Enregistrements effectifs des appareils durant la campagne	182
---	-----

Tableau III 2:Détermination de Hb en fonction de γ et de la profondeur. (Les unités en grisé concernent les barres d'avant côte des sections morphologiques équipées de courantomètres).	186
Tableau III 3: Comparaison de la Hs moyenne à partir de l'ADV (pression) et del'ADCP	188
Tableau III 4: Ecart associé à la mesure de courant par seuil comparaison ADCP ADV	189
Tableau III 5: Courant moyen et résidus associés	190
Tableau III 6: écarts associés à la mesure de courant par seuil comparaison ADCP ADV	191
Tableau III 7: Direction du courant et erreur associée	192
Tableau III 8: Ecart associé à la mesure de direction de courant suivant les seuils de vitesses comparaison ADCP ADV	192
Tableau III 9 Classification des épisodes météo marins	204
Tableau III 10: répartition des directions et des vitesses de courant sur les deux ADCP (GI16 amont dérive) GI17 (aval dérive). Le signe (-) désigne une direction Ouest du courant et (+) une direction Est.	208
Tableau III 11: Distribution des houles significatives par seuil de hauteur	210
Tableau III 12: Distribution des houles significatives par direction de propagation et seuil de hauteur. Le sig (-) désigne une direction Ouest du courant et (+) une direction Est.	;ne 210
Tableau III 13: Distribution des vitesses de courant au niveau du S4 et de l'ADV	226
Tableau III 14: Distribution des directions de courant au niveau du S4 et de l'ADV. Les valeurs (-) désigne u courant dirigé vers le cadran Ouest et les valeurs (+) vers le cadran Est	n 227
Tableau III 15: tableau des corrélations sur l'axe 1	236
Tableau III 16: tableau des corrélations sur les axes 1 et 2	239
Tableau III 17: Tableau des axes factoriels sélectionnés et corrélations associées	241
Tableau III 18: calcul des surfaces mouillées en GI16 et GI17 pour 1997 et 2005	250
Tableau III 19: Coefficient de réflexion moyen dans la fosse interne et externe à Sète et à Véran.	258
Tableau III 20: moyenne des coefficients de réflexion en fonction des Hauteurs significatives de la houle à Se et sur le site de Véran	ète 259

PARTIE 4 :

Tableau IV 1: récapitulatif des données bathymétriques utilisées	276
Tableau IV 2: fréquence d'échantillonnage et maillage retenu pour l'interpolation	279
Tableau IV 3: marge d'erreurs associées aux différents semis de point	289
Tableau IV 4: valeurs de migration de l'arc des fortes pentes au droit des Saintes Maries de la N	Mer entre 1974

Résumé

Cette thèse a eu pour objectif d'étudier l'efficacité et l'impact des ouvrages en enrochement, en domaine microtidal sableux en érosion, du Cap Leucate au Grand Rhône.

L'impact des ouvrages transversaux a été étudié. Nos résultats, basés sur l'étude des variations du rivage avant et après l'implantation des ouvrages, montrent une érosion en aval dérive généralement doublée par rapport à la tendance naturelle. Nous définissons également sur l'ensemble des sites une relation de proportionnalité entre le transport sédimentaire, l'érosion transversale et longitudinale en aval dérive de ces ouvrages.

L'impact d'une digue frontale sur les fonds environnants a également été étudié. Nos résultats, basés à la fois sur un suivi bathymétrique et une campagne courantologique, montrent que la présence de l'ouvrage modifie la morphologie du site par une accentuation des pertes sédimentaires. Nous associons cet important déficit à une réflexivité accrue évaluée au droit de la digue. Nous démontrons, en tout état de cause, son effet incontestable, direct et/ou indirect, sur la morphodynamique du site de Véran.

Enfin l'étude de la modification des fonds au droit du rivage entièrement stabilisé (par des enrochements) des Saintes Maries de la Mer à partir de la comparaison de différents MNT entre 1872 et 2005, montre une accélération de l'érosion des fonds dans les années 1970. Nous associons ces variations à une intensification des forçages météo marins à la fin du XX^{ème} siècle. Sur le site les enrochements ont effectivement permis de stabiliser le rivage au niveau de la ville, ils se sont avérés insuffisants pour faire face à une érosion ancienne, rapide et très profondes de l'avant côte.

En conclusion, nous mettons en évidence qu'au vu des contraintes importantes qu'implique l'implantation des ouvrages en enrochement, il apparaît essentiel de définir avec soin les véritables enjeux économiques, humains et patrimoniaux, afin de justifier l'implantation de ce type d'ouvrages sur les secteurs à protéger.

Summary

This thesis aimed to study the effectiveness and the impact of hard engineering, in sandy microtidal beaches in erosion, between Cap Leucate and Grand Rhône.

The impact of the transverse structures (groines) was studied.Our results, based on the study of the variations of the shore before and after the establishment of the groines, show an erosion downdrift generally doubled compared to the natural tendency. We also define on the whole of the sites a relation of proportionality between sediment transport, transverse and longitudinal erosion downdrift of these groines.

The impact of a seawall on the surrounding funds was also studied. Our results, based at the same time on a bathymetric survey and a courantologic campaign, show that the presence of the seawall modifies the morphology of the site by an increasing of the sedimentary losses. We associate this significant deficit to an increased reflexivity in front of the seawall. We show, in any event, his undeniable, direct and/or indirect effect, on the morphodynamique of the site of Véran.

Finally the study of the modification of the funds to the right of the entirely stabilized shore (by hard engineering) of Saintes Maries de la Mer starting from the comparison of various DEM between 1872 and 2005, show an acceleration of the erosion of the funds in the years 1970. We associate these variations to intensification of forcings weather at the end of the XX^{ème} century. On the site if the hard structures actually stabilize the shore of the city, they proved to be insufficient to face an old, fast and very deep erosion of the coast.

In conclusion, we highlight which within sight of the significant constraints that the establishment of hard structures implies, it appears essential to define carefully the true economic stakes, human and patrimonial, in order to justify the establishment of this type of this works on the sectors to be protected.